当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ant‐Nest‐Inspired Biomimetic Composite for Self‐Cleaning, Heat‐Insulating, and Highly Efficient Electromagnetic Wave Absorption
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-06-28 , DOI: 10.1002/adfm.202407458
Ahmed Elhassan 1 , Jialu Li 2 , Ibrahim Abdalla 3 , Ziao Xu 2 , Jianyong Yu 4 , Zhaoling Li 2, 4 , Bin Ding 4
Affiliation  

The pursuit of eco‐friendly electromagnetic wave absorption (EMWA) materials with multifunctional capabilities has garnered significant attention in practical applications. However, achieving these desired qualities simultaneously poses a significant challenge. This study introduces a single‐step calcination and chemical polymerization process to obtain an environmentally friendly ant‐nest‐inspired hybrid composite by optimizing conductive polypyrrole nanotubes (PNTs) within a 3D carbonaceous structure. The biomimetic composite forms a highly efficient conductive network, providing a pathway for free electrons within the carbonaceous barriers and enhancing the conduction loss. Remarkably, the EMWA performance of the composite achieves ultrathin (1.6 mm), wide effective absorption band (5.4 GHz), and strong absorption intensity (−67.6 dB) features. Moreover, due to the complex and intertwined 3D continuous network, the obtained samples exhibit excellent thermal insulation and superhydrophobic behavior by inhibiting heat transfer and preventing localized areas from being prone to water absorption. These findings not only offer a sustainable and low‐cost production route for biomimetic carbonaceous composites but also demonstrate a high‐efficiency absorber with great multifunctionality as a green alternative to traditional EMWA materials.

中文翻译:


受蚁巢启发的仿生复合材料,具有自清洁、隔热和高效电磁波吸收的作用



对具有多功能功能的环保电磁波吸收(EMWA)材料的追求在实际应用中引起了人们的广泛关注。然而,同时实现这些所需的品质提出了重大挑战。本研究引入了一步煅烧和化学聚合工艺,通过优​​化 3D 碳质结构内的导电聚吡咯纳米管 (PNT) 来获得环保的、受蚁巢启发的杂化复合材料。仿生复合材料形成高效的导电网络,为碳质屏障内的自由电子提供通道并增强传导损耗。值得注意的是,该复合材料的 EMWA 性能实现了超薄(1.6 mm)、宽有效吸收带(5.4 GHz)和强吸收强度(−67.6 dB)的特性。此外,由于复杂且交织的3D连续网络,所获得的样品通过抑制传热和防止局部区域容易吸水而表现出优异的隔热和超疏水行为。这些发现不仅为仿生碳质复合材料提供了一条可持续且低成本的生产路线,而且还展示了一种具有多功能性的高效吸收剂,可作为传统 EMWA 材料的绿色替代品。
更新日期:2024-06-28
down
wechat
bug