当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enabling Quasi‐Zero‐Strain Behavior of Layered Oxide Cathodes via Multiple‐cations Induced Order‐to‐Disorder Transition
Small ( IF 13.0 ) Pub Date : 2024-06-28 , DOI: 10.1002/smll.202404099
Jianhua Zhang 1 , Wenbin Li 1 , Jiayi Yang 2 , Wei Wang 2 , Jingjing Wang 1 , Qi Dong 1 , Xiyu Wang 1 , Yumei Wu 1 , Yuhui Xu 1 , Yixuan Wang 1 , Haofei Yang 1 , Ni Wang 1 , Yang Ren 2 , Xifei Li 1, 3, 4
Affiliation  

The chemically pre‐intercalated lattice engineering is widely applied to elevate the electronic conductivity, expand the interlayer spacing, and improve the structural stability of layered oxide cathodes. However, the mainstream unitary metal ion pre‐intercalation generally produces the cation/vacancy ordered superstructure, which astricts the further improvement of lattice respiration and charge‐carrier ion storage and diffusion. Herein, a multiple metal ions pre‐intercalation lattice engineering is proposed to break the cation/vacancy ordered superstructure. Taking the bilayer V2O5 as an example, Ni, Co, and Zn ternary ions are simultaneously pre‐intercalated into its interlayer space (NiCoZnVO). It is revealed that the Ni─Co neighboring characteristic caused by Ni(3d)‐O(2p)‐Co(3d) orbital coupling and the Co‐Zn/Ni‐Zn repulsion effect due to chemical bond incompatibility, endow the NiCoZnVO sample with the cation/vacancy disordered structure. This not only reduces the Li+ diffusion barrier, but also increases the diffusion dimension of Li+ (from one‐dimension to two‐dimension). Particularly, Ni, Co, and Zn ions co‐pre‐intercalation causes a prestress, which realizes a quasi‐zero‐strain structure at high‐voltage window upon charging/discharging process. The functions of Ni ion stabilizing the lattice structure and Co or Zn ions activating more Li+ reversible storage reaction of V5+/V4+ are further revealed. The cation/vacancy disordered structure significantly enhances Li+ storage properties of NiCoZnVO cathode.

中文翻译:


通过多重阳离子诱导有序到无序转变实现层状氧化物阴极的准零应变行为



化学预插层晶格工程广泛应用于提高电子电导率、扩大层间距和提高层状氧化物阴极的结构稳定性。然而,主流的单一金属离子预嵌入通常会产生阳离子/空位有序的超结构,这限制了晶格呼吸和载流子离子存储和扩散的进一步改善。在此,提出了一种多金属离子预嵌入晶格工程来打破阳离子/空位有序超结构。以双层V2O5为例,Ni、Co和Zn三元离子同时预嵌入其层间空间(NiCoZnVO)。结果表明,Ni(3d)-O(2p)-Co(3d)轨道耦合引起的Ni─Co邻近特性和化学键不相容性导致的Co-Zn/Ni-Zn排斥效应,赋予了NiCoZnVO样品阳离子/空位无序结构。这不仅降低了Li+扩散势垒,而且增加了Li+的扩散维度(从一维到二维)。特别是,Ni、Co和Zn离子的共预嵌入会产生预应力,从而在充放电过程中在高压窗口实现准零应变结构。进一步揭示了Ni离子稳定晶格结构和Co或Zn离子激活更多V5+/V4+的Li+可逆存储反应的作用。阳离子/空位无序结构显着增强了NiCoZnVO正极的Li+储存性能。
更新日期:2024-06-28
down
wechat
bug