当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitric Oxide‐Actuated Titanium Dioxide Janus Nanoparticles for Enhanced Multimodal Disruption of Infectious Biofilms
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-06-28 , DOI: 10.1002/adfm.202407626
Weichen Zhao 1 , Qihang Ding 1, 2 , Bingshuai Zhou 3 , Jia Liu 1 , Yujia Shi 1 , Chengyu Liu 1 , Chunyan Li 1 , Biao Dong 3 , Manlin Qi 1 , Jong Seung Kim 2 , Lin Wang 1
Affiliation  

Sonodynamic therapy (SDT) is promising for combating deep‐seated infectious diseases by generating substantial reactive oxygen species (ROS) through the profound tissue penetration capabilities of ultrasound. However, the compact protective structures of bacterial biofilms present a formidable challenge, impeding ROS efficacy. Given that ROS have a limited diffusion range and current sonosensitizers struggle to infiltrate biofilms, complete eradication of pathogenic bacteria often remains unachieved. In this study, mesoporous titanium dioxide (TiO2) nanoparticles are engineered asymmetrically coated with a thin layer of Ag and loaded with L‐arginine (LA) to construct ultrasound‐propelled nanomotors. These Ag‐TiO2‐LA Janus nanoparticles demonstrate robust self‐propulsion upon ultrasonic activation, allowing for deeper penetration into biofilm matrices and enhancing localized biofilm disruption through improved SDT outcomes. Additionally, the incorporation of Ag not only broadens TiO2’s absorption spectrum but also confers photothermal capabilities upon NIR laser excitation at 808 nm. The Ag‐TiO2‐LA nanomotor amalgamates TiO2’s sonodynamic potential with Ag's photothermal properties, forging a versatile antimicrobial agent capable of efficient biofilm penetration and a synergistic antibacterial effect when subjected to dual NIR and ultrasound stimuli. This innovative, singularly‐structured nanoparticle stands out as an effective combatant against bacterial biofilms and accelerates the healing process of infected wounds, showcasing potential for multifaceted clinical applications.

中文翻译:


一氧化氮驱动的二氧化钛 Janus 纳米颗粒可增强感染性生物膜的多模式破坏



声动力疗法(SDT)通过超声波强大的组织穿透能力产生大量活性氧(ROS),有望对抗深部传染病。然而,细菌生物膜的紧凑保护结构提出了巨大的挑战,阻碍了 ROS 的功效。鉴于活性氧的扩散范围有限,并且目前的声敏剂难以渗透生物膜,因此通常无法完全根除病原菌。在这项研究中,介孔二氧化钛 (TiO2) 纳米粒子被设计为不对称地涂有一层薄薄的银,并负载 L-精氨酸 (LA),以构建超声驱动的纳米马达。这些 Ag-TiO2-LA Janus 纳米颗粒在超声波激活时表现出强大的自推进能力,可以更深入地渗透到生物膜基质中,并通过改善 SDT 结果来增强局部生物膜破坏。此外,Ag的加入不仅拓宽了TiO2的吸收光谱,而且在808 nm近红外激光激发下赋予了光热能力。 Ag-TiO2-LA纳米电机将TiO2的声动力潜力与Ag的光热特性相结合,形成了一种多功能抗菌剂,能够有效穿透生物膜,并在受到近红外和超声双重刺激时发挥协同抗菌作用。这种创新的、结构独特的纳米颗粒作为对抗细菌生物膜的有效对抗剂而脱颖而出,并加速感染伤口的愈合过程,展示了多方面临床应用的潜力。
更新日期:2024-06-28
down
wechat
bug