当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
eReaxFF force field development for BaZr0.8Y0.2O3-δ solid oxide electrolysis cells applications
npj Computational Materials ( IF 9.4 ) Pub Date : 2024-06-28 , DOI: 10.1038/s41524-024-01268-9
Md Jamil Hossain , Prashik Gaikwad , Yun Kyung Shin , Jessica A. Schulze , Katheryn A. Penrod , Meng Li , Yuxiao Lin , Gorakh Pawar , Adri C. T. van Duin

The use of solid-oxide materials in electrocatalysis applications, especially in hydrogen-evolution reactions, is promising. However, further improvements are warranted to overcome the fundamental bottlenecks to enhancing the performance of solid-oxide electrolysis cells (SOECs), which is directly linked to the more-refined fundamental understanding of complex physical and chemical phenomena and mass exchanges that take place at the surfaces and in the bulk of electrocatalysis materials. Here, we developed an eReaxFF force field for barium zirconate doped with 20 mol% of yttrium, BaZr0.8Y0.2O3-δ (BZY20) to enable a systematic, large-length-scale, and longer-timescale atomistic simulation of solid-oxide electrocatalysis for hydrogen generation. All parameters for the eReaxFF were optimized to reproduce quantum-mechanical (QM) calculations on relevant condensed phase and cluster systems describing oxygen vacancies, vacancy migrations, electron localization, water adsorption, water splitting, and hydrogen generation on the surfaces of the BZY20 solid oxide. Using the developed force field, we performed both zero-voltage (excess electrons absent) and non-zero-voltage (excess electrons present) molecular dynamics simulations to observe water adsorption, water splitting, proton migration, oxygen-vacancy migrations, and eventual hydrogen-production reactions. Based on investigations offered in the present study, we conclude that the eReaxFF force field-based approach can enable computationally efficient simulations for electron conductivity, electron leakage, and other non-zero-voltage effects on the solid oxide materials using the explicit-electron concept. Moreover, we demonstrate how the eReaxFF force field-based atomistic-simulation approach can enhance our understanding of processes in SOEC applications and potentially other renewable-energy applications.



中文翻译:


BaZr0.8Y0.2O3-δ 固体氧化物电解池应用的 eReaxFF 力场开发



固体氧化物材料在电催化应用中的应用,特别是在析氢反应中,是有前景的。然而,需要进一步改进以克服提高固体氧化物电解池(SOEC)性能的基本瓶颈,这与对复杂物理和化学现象以及发生在固体氧化物电解池中的质量交换的更深入的基本理解直接相关。表面和电催化材料的本体中。在这里,我们开发了掺杂 20 mol% 钇的锆酸钡 BaZr 0.8 Y 0.2 O 3-δ (BZY20) 的 eReaxFF 力场,以实现系统化,大规模和较长时间尺度的固体氧化物电催化制氢原子模拟。 eReaxFF 的所有参数均经过优化,可重现相关凝聚相和簇系统的量子力学 (QM) 计算,描述 BZY20 固体氧化物表面上的氧空位、空位迁移、电子局域化、水吸附、水分解和氢气生成。利用开发的力场,我们进行了零电压(不存在多余电子)和非零电压(存在多余电子)分子动力学模拟,以观察水吸附、水分解、质子迁移、氧空位迁移和最终的氢-生产反应。根据本研究中提供的调查,我们得出结论,基于 eReaxFF 力场的方法可以使用显式电子概念对固体氧化物材料上的电子电导率、电子泄漏和其他非零电压效应进行计算有效的模拟。 此外,我们还展示了基于 eReaxFF 力场的原子模拟方法如何增强我们对 SOEC 应用和其他潜在可再生能源应用过程的理解。

更新日期:2024-06-28
down
wechat
bug