当前位置: X-MOL 学术Glob. Ecol. Biogeogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions
Global Ecology and Biogeography ( IF 6.3 ) Pub Date : 2024-06-26 , DOI: 10.1111/geb.13884
David H. Klinges 1 , J. Alex Baecher 1 , Jonas J. Lembrechts 2, 3 , Ilya M. D. Maclean 4 , Jonathan Lenoir 5 , Caroline Greiser 6, 7 , Michael Ashcroft 8 , Luke J. Evans 9 , Michael R. Kearney 10 , Juha Aalto 11 , Isabel C. Barrio 12 , Pieter De Frenne 13 , Joannès Guillemot 14, 15, 16 , Kristoffer Hylander 17 , Tommaso Jucker 18 , Martin Kopecký 19, 20 , Miska Luoto 21 , Martin Macek 19 , Ivan Nijs 3 , Josef Urban 22 , Liesbeth van den Brink 23, 24 , Pieter Vangansbeke 13 , Jonathan Von Oppen 25 , Jan Wild 19 , Julia Boike 26, 27 , Rafaella Canessa 28, 29, 30 , Marcelo Nosetto 31, 32 , Alexey Rubtsov 33 , Jhonatan Sallo‐Bravo 34 , Brett R. Scheffers 9
Affiliation  

The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.

中文翻译:


近端微气候:超越时空分辨率可改善生态预测



环境数据的规模通常由其范围(空间面积、时间持续时间)和分辨率(粒度、时间间隔)来定义。尽管通过这些术语描述气候数据规模适用于大多数气象应用,但对于生态学和生物地理学来说,相同时空分辨率和范围的气候数据与生物体的相关性可能有所不同。在这里,我们提出,对于生态现实主义来说,气候接近度,或者说气候数据如何很好地代表生物体所面临的实际条件,比气候数据的时空分辨率更重要。
更新日期:2024-06-26
down
wechat
bug