当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Measuring gravitational attraction with a lattice atom interferometer
Nature ( IF 50.5 ) Pub Date : 2024-06-26 , DOI: 10.1038/s41586-024-07561-3
Cristian D. Panda , Matthew J. Tao , Miguel Ceja , Justin Khoury , Guglielmo M. Tino , Holger Müller

Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth’s gravity1, the gravitational constant2, deviations from Newtonian gravity3,4,5,6 and general relativity7. However, using atoms in free fall limits measurement time to a few seconds8, and much less when measuring interactions with a small source mass2,5,6,9. Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated10,11,12,13,14. However, the optical lattice must balance Earth’s gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic effects. We measure the attraction of a miniature source mass to be amass = 33.3 ± 5.6stat ± 2.7syst nm s−2, consistent with Newtonian gravity, ruling out ‘screened fifth force’ theories3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s−2 surpasses by more than a factor of four the best similar measurements with atoms in free fall5,6. Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges17,18, compact gravimetry19,20,21,22, measuring the gravitational Aharonov–Bohm effect9,23 and the gravitational constant2, and testing whether the gravitational field has quantum properties24.



中文翻译:


用晶格原子干涉仪测量引力



尽管重力是大尺度自然的主导力量,但对于精密的实验室实验来说,重力仍然相对难以捉摸。原子干涉仪是研究地球引力 1 、引力常数 2 、牛顿引力偏差 3,4,5,6 和广义相对论 7 ,而在测量与小源质量 2,5,6,9 的相互作用时则要短得多。最近,已经证明了原子在光学晶格模式下通过光学腔过滤悬浮 70 秒的干涉仪 10,11,12,13,14 。然而,光学晶格必须通过施加比假定信号强十亿倍的力来平衡地球引力,因此即使是微小的缺陷也可能产生复杂的系统效应。因此,晶格干涉仪尚未用于重力的精密测试。在这里,我们优化了晶格干涉仪的重力灵敏度,并使用信号反演系统来抑制和量化系统效应。我们测量微型源质量的吸引力为 a mass = 33.3 ± 5.6 stat ± 2.7 syst nm s −2 ,一致与牛顿引力,排除了在其自然参数空间上的“屏蔽第五力”理论 3,15,16 。 6.2 nm s −2 的整体精度超过自由落体原子 5,6 的最佳类似测量结果的四倍以上。 改进的原子冷却和倾斜噪声抑制可能会进一步提高研究亚毫米范围力 17,18 、紧凑重力测量 19,20,21,22 、测量引力阿哈罗诺夫-玻姆效应 9,23 ,并测试引力场是否具有量子特性 24

更新日期:2024-06-27
down
wechat
bug