当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantitative phase imaging based on holography: trends and new perspectives
Light: Science & Applications ( IF 20.6 ) Pub Date : 2024-06-27 , DOI: 10.1038/s41377-024-01453-x
Zhengzhong Huang 1 , Liangcai Cao 1
Affiliation  

In 1948, Dennis Gabor proposed the concept of holography, providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development, holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics, biology, and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field, non-contact, precise, and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples, which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here, we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain, and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles, technical approaches, and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology, analytical chemistry, clinical sciences, wavefront sensing, and semiconductor production.



中文翻译:


基于全息术的定量相位成像:趋势和新视角



1948年,Dennis Gabor提出了全息术的概念,为光学波前的定量描述提供了开创性的解决方案。经过75年的发展,全息成像已成为光学波前测量和定量相位成像的有力工具。这项技术的出现给物理学、生物学和材料科学注入了新的活力。数字全息术(DH)具有宽视场、非接触、精确、动态的复杂波测量能力等量化优势。 DH 具有通过测量带有相位信息的光散射来传播光场的独特功能。它提供弱吸收样品的折射率和厚度分布的定量可视化,这在各种疾病的病理生理学和各种材料的表征中发挥着至关重要的作用。它提供了弥合成像和散射学科之间差距的可能性。波前的传播由复振幅描述。复域中的复值是根据实域中相机的强度值测量来重建的。在这里,我们将全息记录和重建的过程视为复域和实域之间的转换,并讨论重建的数学和物理原理。我们回顾了 DH 的基本原理、技术方法和应用广度。最后,我们总结了基于将全息成像与其他方法相结合而出现的新挑战和机遇,进一步扩大了全息成像的范围和实用性。 多学科性质将无标记细胞生物学、分析化学、临床科学、波前传感和半导体生产领域的技术和应用专家聚集在一起。

更新日期:2024-06-27
down
wechat
bug