当前位置:
X-MOL 学术
›
Polym. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimizing stability through conformational locking and ring fusion modulation in organic semiconductors
Polymer Chemistry ( IF 4.1 ) Pub Date : 2024-06-24 , DOI: 10.1039/d4py00246f Salahuddin S. Attar 1 , Bahattin Bademci 2 , Maciej Barłóg 1 , Dušan Sredojević 1, 3 , Hessa Al-Thani 1 , Sandra Dudley 2 , Konstantinos Kakosimos 1 , Hassan S. Bazzi 4 , Muhammad Tariq Sajjad 2 , Mohammed Al-Hashimi 1
Polymer Chemistry ( IF 4.1 ) Pub Date : 2024-06-24 , DOI: 10.1039/d4py00246f Salahuddin S. Attar 1 , Bahattin Bademci 2 , Maciej Barłóg 1 , Dušan Sredojević 1, 3 , Hessa Al-Thani 1 , Sandra Dudley 2 , Konstantinos Kakosimos 1 , Hassan S. Bazzi 4 , Muhammad Tariq Sajjad 2 , Mohammed Al-Hashimi 1
Affiliation
The newly synthesized fused tetrathienophenanthroline (TTP) acceptor molecule, achieved via one-pot superacid catalyzed intramolecular cyclization, offers a promising alternative to the conventional benzodithiophene-4,8-dione (BDD) moieties in high-performance photovoltaic materials. The S, N heteroacene type TTP core exhibits complete planarity and enhanced electron richness compared to the BDD core, paving the way for fine tuning the morphology, optoelectronic properties, and frontier molecular energy levels in donor–acceptor-type materials. Side-chain engineering resulted in a balanced electron-rich nature of the monomer and enhanced solubility/processability of the resulting polymers. These molecular strategies for PTTP1-BDT contribute to improved stability and morphology, crucial for organic electronic device applications. Incorporation of PTTP1-BDT and PBDB-T as donor polymers in organic photovoltaics resulted in a power conversion efficiency (PCE) of ∼3% for PTTP1-BDT and ∼8% for PBDB-T. The compromise in PTTP1-BDT based device efficiency was attributed to lower and unbalanced charge mobility.
中文翻译:
通过有机半导体中的构象锁定和环融合调制优化稳定性
新合成的稠合四噻吩并菲咯啉(TTP)受体分子是通过一锅超酸催化分子内环化实现的,为高性能光伏材料中传统的苯并二噻吩-4,8-二酮(BDD)部分提供了一种有前途的替代品。与BDD核相比,S、N杂并苯型TTP核表现出完整的平面性和增强的电子丰富度,为微调供体-受体型材料的形貌、光电性能和前沿分子能级铺平了道路。侧链工程导致单体平衡的富电子性质,并增强所得聚合物的溶解度/可加工性。 PTTP1-BDT 的这些分子策略有助于提高稳定性和形态,这对于有机电子器件应用至关重要。将 PTTP1-BDT 和 PBDB-T 作为有机光伏中的供体聚合物结合,PTTP1-BDT 的功率转换效率 (PCE) 约为 3%,PBDB-T 的功率转换效率 (PCE) 约为 8%。基于 PTTP1-BDT 的器件效率的折衷归因于较低且不平衡的电荷迁移率。
更新日期:2024-06-24
中文翻译:
通过有机半导体中的构象锁定和环融合调制优化稳定性
新合成的稠合四噻吩并菲咯啉(TTP)受体分子是通过一锅超酸催化分子内环化实现的,为高性能光伏材料中传统的苯并二噻吩-4,8-二酮(BDD)部分提供了一种有前途的替代品。与BDD核相比,S、N杂并苯型TTP核表现出完整的平面性和增强的电子丰富度,为微调供体-受体型材料的形貌、光电性能和前沿分子能级铺平了道路。侧链工程导致单体平衡的富电子性质,并增强所得聚合物的溶解度/可加工性。 PTTP1-BDT 的这些分子策略有助于提高稳定性和形态,这对于有机电子器件应用至关重要。将 PTTP1-BDT 和 PBDB-T 作为有机光伏中的供体聚合物结合,PTTP1-BDT 的功率转换效率 (PCE) 约为 3%,PBDB-T 的功率转换效率 (PCE) 约为 8%。基于 PTTP1-BDT 的器件效率的折衷归因于较低且不平衡的电荷迁移率。