当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling nutrient flow-mediated stress in plant roots using an on-chip phytofluidic device
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-06-25 , DOI: 10.1039/d4lc00180j
Kaushal Agarwal 1 , Sumit Kumar Mehta 2 , Pranab Kumar Mondal 1, 2
Affiliation  

The initial emergence of the primary root from a germinating seed is a pivotal phase that influences a plant's survival. Abiotic factors such as pH, nutrient availability, and soil composition significantly affect root morphology and architecture. Of particular interest is the impact of nutrient flow on thigmomorphogenesis, a response to mechanical stimulation in early root growth, which remains largely unexplored. This study explores the intricate factors influencing early root system development, with a focus on the cooperative correlation between nutrient uptake and its flow dynamics. Using a physiologically as well as ecologically relevant, portable, and cost-effective microfluidic system for the controlled fluid environments offering hydraulic conductivity comparable to that of the soil, this study analyzes the interplay between nutrient flow and root growth post-germination. Emphasizing the relationship between root growth and nitrogen uptake, the findings reveal that nutrient flow significantly influences early root morphology, leading to increased length and improved nutrient uptake, varying with the flow rate. The experimental findings are supported by mechanical and plant stress-related fluid flow–root interaction simulations and quantitative determination of nitrogen uptake using the total Kjeldahl nitrogen (TKN) method. The microfluidic approach offers novel insights into plant root dynamics under controlled flow conditions, filling a critical research gap. By providing a high-resolution platform, this study contributes to the understanding of how fluid-flow-assisted nutrient uptake and pressure affect root cell behavior, which, in turn, induces mechanical stress leading to thigmomorphogenesis. The findings hold implications for comprehending root responses to changing environmental conditions, paving the way for innovative agricultural and environmental management strategies.

中文翻译:


使用片上植物流体装置揭示植物根部养分流介导的胁迫



发芽种子中初生根的最初出现是影响植物生存的关键阶段。 pH 值、养分有效性和土壤成分等非生物因素显着影响根系形态和结构。特别令人感兴趣的是养分流对触状形态发生的影响,触状形态发生是早期根生长对机械刺激的反应,这在很大程度上仍未被探索。本研究探讨了影响早期根系发育的复杂因素,重点是养分吸收与其流动动力学之间的协同相关性。本研究使用生理和生态相关、便携式且经济高效的微流体系统来控制流体环境,提供与土壤相当的水力传导率,分析养分流和发芽后根系生长之间的相互作用。研究结果强调根系生长与氮吸收之间的关系,表明养分流显着影响早期根系形态,导致长度增加和养分吸收改善,随流速的变化而变化。实验结果得到了机械和植物胁迫相关的流体流动-根部相互作用模拟以及使用总凯氏氮(TKN)方法定量测定氮吸收的支持。微流体方法为受控流动条件下的植物根系动力学提供了新颖的见解,填补了关键的研究空白。通过提供高分辨率平台,这项研究有助于理解流体流动辅助的养分吸收和压力如何影响根细胞行为,进而诱导机械应力,导致触状形态发生。 这些发现对于理解根系对不断变化的环境条件的反应具有重要意义,为创新农业和环境管理策略铺平道路。
更新日期:2024-06-25
down
wechat
bug