当前位置:
X-MOL 学术
›
Br. J. Ophthalmol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Generative artificial intelligence in ophthalmology: current innovations, future applications and challenges
British Journal of Ophthalmology ( IF 3.7 ) Pub Date : 2024-10-01 , DOI: 10.1136/bjo-2024-325458 Sadi Can Sonmez 1 , Mertcan Sevgi 2, 3 , Fares Antaki 2, 3, 4 , Josef Huemer 3, 5 , Pearse A Keane 3, 6
British Journal of Ophthalmology ( IF 3.7 ) Pub Date : 2024-10-01 , DOI: 10.1136/bjo-2024-325458 Sadi Can Sonmez 1 , Mertcan Sevgi 2, 3 , Fares Antaki 2, 3, 4 , Josef Huemer 3, 5 , Pearse A Keane 3, 6
Affiliation
The rapid advancements in generative artificial intelligence are set to significantly influence the medical sector, particularly ophthalmology. Generative adversarial networks and diffusion models enable the creation of synthetic images, aiding the development of deep learning models tailored for specific imaging tasks. Additionally, the advent of multimodal foundational models, capable of generating images, text and videos, presents a broad spectrum of applications within ophthalmology. These range from enhancing diagnostic accuracy to improving patient education and training healthcare professionals. Despite the promising potential, this area of technology is still in its infancy, and there are several challenges to be addressed, including data bias, safety concerns and the practical implementation of these technologies in clinical settings. Data sharing not applicable as no datasets generated and/or analysed for this study.
中文翻译:
眼科领域的生成式人工智能:当前创新、未来应用和挑战
生成式人工智能的快速发展将对医疗领域产生重大影响,尤其是眼科。生成对抗网络和扩散模型支持创建合成图像,有助于开发为特定成像任务量身定制的深度学习模型。此外,能够生成图像、文本和视频的多模态基础模型的出现,在眼科领域提出了广泛的应用。这些措施包括提高诊断准确性、改善患者教育和培训医疗保健专业人员。尽管潜力巨大,但该技术领域仍处于起步阶段,还有几项挑战需要解决,包括数据偏差、安全问题以及这些技术在临床环境中的实际实施。数据共享不适用,因为没有为本研究生成和/或分析数据集。
更新日期:2024-09-20
中文翻译:
眼科领域的生成式人工智能:当前创新、未来应用和挑战
生成式人工智能的快速发展将对医疗领域产生重大影响,尤其是眼科。生成对抗网络和扩散模型支持创建合成图像,有助于开发为特定成像任务量身定制的深度学习模型。此外,能够生成图像、文本和视频的多模态基础模型的出现,在眼科领域提出了广泛的应用。这些措施包括提高诊断准确性、改善患者教育和培训医疗保健专业人员。尽管潜力巨大,但该技术领域仍处于起步阶段,还有几项挑战需要解决,包括数据偏差、安全问题以及这些技术在临床环境中的实际实施。数据共享不适用,因为没有为本研究生成和/或分析数据集。