当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulating interfacial chemistry with biobased multifunctional cellulose levulinate ester for highly reversible zinc ion batteries
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-06-25 , DOI: 10.1016/j.ensm.2024.103597 Kui Chen , Yumei Chen , Yongzhen Xu , Mingwei Xu , Yue Li , Song Yang , Qing Wu , Qinqin Xu , Haibo Xie , Jun Huang
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-06-25 , DOI: 10.1016/j.ensm.2024.103597 Kui Chen , Yumei Chen , Yongzhen Xu , Mingwei Xu , Yue Li , Song Yang , Qing Wu , Qinqin Xu , Haibo Xie , Jun Huang
The unstable Zn interface, stemming from dendritic and parasitic side reactions, has posed significant challenges to the large-scale implementation of aqueous zinc ion batteries (ZIBs). Herein, a biobased multifunctional cellulose levulinate ester additive, featured by an acetyl propyl ketone moiety, was proposed to regulate the Zn anode/electrolyte interface chemistry. The well-designed cellulose levulinate ester exhibits strong adsorption capacity, fascinating protective layer, and exposed both hydrogen-bonding acceptor and donor due to the keto-enol tautomerism. The constructed organic-inorganic bilayer solid-electrolyte interphase enriched with ZnCO-ZnF-ZnS component effectively inhibits Zn dendrites, alleviates corrosion, and improves cycle stability. Consequently, the Zn(OTf)/CLE electrolyte demonstrates highly reversible plating/stripping capability, enabling cycling for more than 2800 h in the shelving-recovery test, affirming their adaptability for long-term aqueous ZIBs. As a conceptual verification, the assembled Zn//MnO cells display exceptional cycle stability with a high capacity retention of 78.6 % after 3000 cycles. The construction of a protective layer on the Zn anode using a biobased multifunctional cellulose levulinate ester additive offers an effective strategy for achieving high-performance Zn metal anodes in aqueous ZIBs.
中文翻译:
用生物基多功能纤维素乙酰丙酸酯调节高度可逆锌离子电池的界面化学
由于枝晶和寄生副反应而导致的锌界面不稳定,对水性锌离子电池(ZIB)的大规模应用提出了重大挑战。在此,提出了一种以乙酰丙基酮部分为特征的生物基多功能纤维素乙酰丙酸酯添加剂来调节锌阳极/电解质界面化学。精心设计的乙酰丙酸纤维素酯具有强大的吸附能力、迷人的保护层,并且由于酮-烯醇互变异构而同时暴露出氢键受体和供体。所构建的富含ZnCO-ZnF-ZnS组分的有机-无机双层固体电解质界面相有效抑制Zn枝晶,减轻腐蚀并提高循环稳定性。因此,Zn(OTf)/CLE 电解质表现出高度可逆的电镀/剥离能力,在搁置恢复测试中能够循环超过 2800 小时,证实了它们对长期水性 ZIB 的适应性。作为概念验证,组装的 Zn//MnO 电池表现出卓越的循环稳定性,3000 次循环后容量保持率为 78.6%。使用生物基多功能纤维素乙酰丙酸酯添加剂在锌阳极上构建保护层,为在水性 ZIB 中实现高性能锌金属阳极提供了有效的策略。
更新日期:2024-06-25
中文翻译:
用生物基多功能纤维素乙酰丙酸酯调节高度可逆锌离子电池的界面化学
由于枝晶和寄生副反应而导致的锌界面不稳定,对水性锌离子电池(ZIB)的大规模应用提出了重大挑战。在此,提出了一种以乙酰丙基酮部分为特征的生物基多功能纤维素乙酰丙酸酯添加剂来调节锌阳极/电解质界面化学。精心设计的乙酰丙酸纤维素酯具有强大的吸附能力、迷人的保护层,并且由于酮-烯醇互变异构而同时暴露出氢键受体和供体。所构建的富含ZnCO-ZnF-ZnS组分的有机-无机双层固体电解质界面相有效抑制Zn枝晶,减轻腐蚀并提高循环稳定性。因此,Zn(OTf)/CLE 电解质表现出高度可逆的电镀/剥离能力,在搁置恢复测试中能够循环超过 2800 小时,证实了它们对长期水性 ZIB 的适应性。作为概念验证,组装的 Zn//MnO 电池表现出卓越的循环稳定性,3000 次循环后容量保持率为 78.6%。使用生物基多功能纤维素乙酰丙酸酯添加剂在锌阳极上构建保护层,为在水性 ZIB 中实现高性能锌金属阳极提供了有效的策略。