当前位置: X-MOL 学术Limnol. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi‐omics analyses reveal the signatures of metabolite transfers across trophic levels in a high‐CO2 ocean
Limnology and Oceanography ( IF 3.8 ) Pub Date : 2024-06-25 , DOI: 10.1002/lno.12605
Mengcheng Ye 1 , Jiale Zhang 1 , Mengting Xiao 1 , Jiali Huang 1 , Yunyue Zhou 1 , John Beardall 2 , John A. Raven 3, 4, 5 , Guang Gao 6 , Xiao Liang 1 , Fenghuang Wu 1 , Baoyi Peng 1 , Leyao Xu 1 , Yucong Lu 1 , Shiman Liang 1 , Yipeng Wang 1 , Hao Zhang 1 , Jingyao Li 1 , Ling Cheng 7 , Zuoxi Ruan 8 , Jianrong Xia 1 , Peng Jin 1
Affiliation  

Although the diverse impacts of elevated dissolved CO2 and warming on organisms within various trophic levels in marine food webs are well documented, we have yet to explore the biological links across different levels of biological organization from primary producers to secondary producers on an evolutionary time scale in a high‐CO2 ocean. Here, we cultured a model marine diatom Phaeodactylum tricornutum (primary producer) in predicted future high‐CO2 and/or warming conditions for ~ 1250 d with an experimental evolution approach and then fed them to the clam Coelomactra antiquata (secondary producer). We present an in‐depth multi‐omics analysis along the methylome (primary producer)–transcriptome (primary producer)–metabolome (primary producer)–metabolome (secondary producer) continuum. Our results showed that the downregulated terpenoid backbone biosynthesis in the methylome and transcriptome lead to decreased pyruvate levels and upregulation of some pathways (such as phenylalanine metabolism) in the metabolome of the primary producer in the long‐term warming conditions. These changes in metabolomic profile in the primary producer were then transferred to the secondary producer, resulting in changes in abundance of some metabolites, such as decreases in pyruvate, and in pyruvaldhyde (also known as methylglyoxal), and increases in 2‐hydroxylamino‐4,6‐dinitrotoluene. Our study provides a new insight into the molecular mechanisms underlying the trophic transfer from primary to secondary producers in a future high‐CO2 ocean and may provide more accurate projections of marine ecosystem services and functions over the next century.

中文翻译:


多组学分析揭示了高二氧化碳海洋中跨营养级代谢物转移的特征



尽管溶解二氧化碳浓度升高和变暖对海洋食物网不同营养级生物体的不同影响已有充分记录,但我们尚未在进化时间尺度上探索从初级生产者到次级生产者的不同生物组织层次之间的生物联系。高二氧化碳海洋。在这里,我们采用实验进化方法在预测的未来高二氧化碳和/或变暖条件下培养了模型海洋硅藻三角褐指藻(主要生产者)约 1250 天,然后将其喂给蛤 Coelomactra antiquata(二次生产者)。我们提出了沿着甲基组(初级生产者)-转录组(初级生产者)-代谢组(初级生产者)-代谢组(次级生产者)连续体的深入多组学分析。我们的结果表明,在长期变暖的条件下,甲基化组和转录组中萜类主链生物合成的下调导致丙酮酸水平降低以及初级生产者代谢组中某些途径(例如苯丙氨酸代谢)的上调。初级生产者代谢组谱的这些变化随后转移到二级生产者,导致一些代谢物的丰度发生变化,例如丙酮酸和丙酮醛(也称为甲基乙二醛)的减少,以及 2-羟氨基-4 的增加,6-二硝基甲苯。我们的研究为未来高二氧化碳海洋中从初级生产者到次级生产者的营养转移的分子机制提供了新的见解,并可能为下个世纪的海洋生态系统服务和功能提供更准确的预测。
更新日期:2024-06-25
down
wechat
bug