当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-06-24 , DOI: 10.1021/acs.est.3c10146
Dimitar Z Epihov 1 , Steven A Banwart 2, 3 , Steve P McGrath 4 , David P Martin 1 , Isabella L Steeley 1 , Vicky Cobbold 1 , Ilsa B Kantola 5 , Michael D Masters 5 , Evan H DeLucia 5 , David J Beerling 1
Affiliation  

Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N′-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha–1 to improve EW’s competitiveness relative to other CDR strategies.

中文翻译:


土壤中的铁螯合:通过增强岩石风化加速二氧化碳去除的可扩展生物技术



增强岩石风化(EW)是一种新兴的大气二氧化碳去除(CDR)策略,正在由商业部门推广。在这里,我们结合了地下微生物组的多组学分析、基于实验室的溶解研究以及现场电子战试验土壤的孵化研究,为操纵土壤中的铁螯合剂以提高电子战效率和降低成本奠定了基础。微生物铁载体是高亲和力、高选择性铁 (Fe) 螯合剂,可增强细胞对土壤矿物质中铁的吸收。将 RNA-seq 宏转录组学和鸟枪法宏基因组学应用于 EW 现场试验的土壤和玄武岩颗粒,结果表明,相对于周围土壤的微生物组,玄武岩颗粒上的微生物群落显着上调铁载体生物合成基因表达。单独的体外实验室孵化研究表明,铁载体和高亲和力合成螯合剂(乙二胺-N , N'-双-2-羟基苯乙酸,EDDHA)的微摩尔溶液可加速 EW,从而提高 CDR 率。基于这些发现,我们开发了一种潜在的生物技术途径,使用合成铁螯合剂 EDDHA 加速 EW,EDDHA 常用于农学,以缓解高 pH 土壤中的铁缺乏。通过促进玄武岩的非生物溶解和上调微生物铁载体的产生,进一步加速风化反应,用 EW 田间试验土壤与钾-EDDHA 溶液一起孵育,可将潜在 CDR 率提高高达 2.5 倍。此外,EDDHA 可以缓解由于 EW 随着时间的推移土壤 pH 值上升而对作物造成的潜在铁限制。初步成本效益分析表明钾-EDDHA 可以将 EW-CDR 成本降低多达美国 77 美元 t CO 2 ha –1提高 EW 相对于其他 CDR 策略的竞争力。
更新日期:2024-06-24
down
wechat
bug