当前位置: X-MOL 学术Pest Manag. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Forecasting habitat suitability and niche shifts of two global maize pests: Ostrinia furnacalis and Ostrinia nubilalis (Lepidoptera: Crambidae)
Pest Management Science ( IF 3.8 ) Pub Date : 2024-06-25 , DOI: 10.1002/ps.8257
Bing Li 1, 2 , Erik B. Dopman 3 , Yanling Dong 1 , Zhaofu Yang 1, 2
Affiliation  

BACKGROUNDOstrinia furnacalis (ACB) and Ostrinia nubilalis (ECB) are devastating pests of the agricultural crop maize worldwide. However, little is known about their potential distribution and niche shifts during their global invasion. Since long‐term selection to past climate variability has shaped their historical niche breadth, such niche shifts may provide an alternative basis for understanding their responses to present and future climate change. By integrating the niche unfilling, stability, and expansion situations into a single framework, our study quantifies the patterns of niche shift in the spatial distribution of these two pests during the different periods.RESULTSOur results show that the overall suitable habitats of ACB and ECB in the future decrease but highly and extremely suitable habitat will become more widespread, suggesting these two insects may occur more frequently in specific regions. Compared with Southeast Asia and Australia, the ACB niche in China exhibited expansion rather than unfilling. For ECB, initial niches have a tendency to be retained in Eurasia despite there also being potential for expansion in North America. The niche equivalency and similarity test results further indicate that niche shifts were common for both ACB and ECB in different survival regions during their colonization of new habitat and their suitable habitat changes during the paleoclimate were associated with climatic changes.CONCLUSIONSThese findings improve our understanding of the ecological characteristics of ACB and ECB worldwide, and will be useful in the development of prevention and control strategies for two insect pests worldwide. © 2024 Society of Chemical Industry.
更新日期:2024-06-25
down
wechat
bug