当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Room-temperature-modulated polymorphism of nonfullerene acceptors enables efficient bilayer organic solar cells
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-06-25 , DOI: 10.1039/d4ee02330g Zhenmin Zhao 1 , Sein Chung 2 , Young Yong Kim 3 , Minyoung Jeong 2 , Xin Li 1 , Jingjing Zhao 1 , Chaofeng Zhu 1 , Safakath Karuthedath 4 , Yufei Zhong 5 , Kilwon Cho 2 , Zhipeng Kan 1
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-06-25 , DOI: 10.1039/d4ee02330g Zhenmin Zhao 1 , Sein Chung 2 , Young Yong Kim 3 , Minyoung Jeong 2 , Xin Li 1 , Jingjing Zhao 1 , Chaofeng Zhu 1 , Safakath Karuthedath 4 , Yufei Zhong 5 , Kilwon Cho 2 , Zhipeng Kan 1
Affiliation
Polymorphism of nonfullerene acceptors enhances electron transport properties and potentially impacts the performance of organic electronic devices. However, their application in organic solar cells is limited by the required high-temperature thermal annealing, as the high-temperature treatment often detrimentally affects the active layer morphology. Herein, we demonstrate that polymorphs of nonfullerene acceptors, such as Y6 and BTP-eC9, can be modulated at room temperature and significantly improve the power conversion efficiency of bilayer organic solar cells. Polymorphs with varied orientations and scales are formed in the neat Y6 and BTP-eC9 films cast from the poor solvent with high-boiling-point solvent additives. Bilayer devices, comprising the acceptor layers with polymorphs and a PM6 layer, are fabricated, and we attain a champion power conversion efficiency of 18.63% (18.17% certified) with superior device stability. The performance of the bilayer devices outperforms the counterparts with polymer layer PM6 processed with solvent additives, providing concrete proof that solvent additives optimize the morphology of the small molecular acceptors rather than the polymer donor. Our results provide comprehensive insights into low-temperature-processed polymorphism and the nature of the impact of solvent additives for high-performance nonfullerene organic solar cells.
中文翻译:
非富勒烯受体的室温调节多态性使高效双层有机太阳能电池成为可能
非富勒烯受体的多晶型增强了电子传输性能,并可能影响有机电子器件的性能。然而,它们在有机太阳能电池中的应用受到所需的高温热退火的限制,因为高温处理通常会对有源层形态产生不利影响。在此,我们证明了非富勒烯受体的多晶型物,例如Y6和BTP-eC9,可以在室温下进行调制,并显着提高双层有机太阳能电池的功率转换效率。由含有高沸点溶剂添加剂的不良溶剂流延而成的纯 Y6 和 BTP-eC9 薄膜中形成了具有不同取向和尺度的多晶型物。双层器件由多晶型受体层和 PM6 层组成,我们的冠军功率转换效率为 18.63%(经认证为 18.17%),并具有卓越的器件稳定性。双层器件的性能优于采用溶剂添加剂处理的聚合物层 PM6 的同类器件,这提供了具体证据,证明溶剂添加剂优化了小分子受体而不是聚合物供体的形态。我们的研究结果为高性能非富勒烯有机太阳能电池的低温加工多态性和溶剂添加剂影响的本质提供了全面的见解。
更新日期:2024-06-25
中文翻译:
非富勒烯受体的室温调节多态性使高效双层有机太阳能电池成为可能
非富勒烯受体的多晶型增强了电子传输性能,并可能影响有机电子器件的性能。然而,它们在有机太阳能电池中的应用受到所需的高温热退火的限制,因为高温处理通常会对有源层形态产生不利影响。在此,我们证明了非富勒烯受体的多晶型物,例如Y6和BTP-eC9,可以在室温下进行调制,并显着提高双层有机太阳能电池的功率转换效率。由含有高沸点溶剂添加剂的不良溶剂流延而成的纯 Y6 和 BTP-eC9 薄膜中形成了具有不同取向和尺度的多晶型物。双层器件由多晶型受体层和 PM6 层组成,我们的冠军功率转换效率为 18.63%(经认证为 18.17%),并具有卓越的器件稳定性。双层器件的性能优于采用溶剂添加剂处理的聚合物层 PM6 的同类器件,这提供了具体证据,证明溶剂添加剂优化了小分子受体而不是聚合物供体的形态。我们的研究结果为高性能非富勒烯有机太阳能电池的低温加工多态性和溶剂添加剂影响的本质提供了全面的见解。