当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Materials challenges on the path to gigatonne CO2 electrolysis
Nature Reviews Materials ( IF 79.8 ) Pub Date : 2024-06-24 , DOI: 10.1038/s41578-024-00696-9
Blanca Belsa , Lu Xia , Viktoria Golovanova , Bárbara Polesso , Adrián Pinilla-Sánchez , Lara San Martín , Jiaye Ye , Cao-Thang Dinh , F. Pelayo García de Arquer

CO2 electroreduction (CO2E) is one promising strategy towards decarbonization, offering a path to produce widely used chemicals such as fuels or manufacturing feedstocks using renewable energy and waste CO2 (as opposed to fossil fuels). CO2E performance at the laboratory scale is advancing quickly, including ongoing scale-up and industrialization efforts. To address global CO2 emissions (~37 Gt per year), CO2 electrolysers and components, as well as upstream and downstream associated technologies, must be deployed at the gigawatt scale. This entails considerable challenges beyond performance, such as resource availability, deployment readability and end-of-life system management, which are today overlooked. In this Review, we analyse the impending resource challenges as CO2E deployment approaches gigatonne scale, considering a life cycle assessment focused on the associated materials and their corresponding global warming impact. We identify scalability bottlenecks related to membranes, electrode supports and anode materials, among others, and discuss the need for more stable carbon-efficient systems and materials recycling strategies. We conclude with potential approaches to rationally design materials towards sustainable CO2 capture and electrolysis at the gigatonne scale.



中文翻译:


十亿吨二氧化碳电解之路上的材料挑战



CO 2 电还原 (CO 2 E) 是一种有前途的脱碳策略,为利用可再生能源和废 CO 2 (相对于化石燃料)。实验室规模的 CO 2 E 性能正在快速提高,包括正在进行的规模扩大和工业化工作。为了解决全球 CO 2 排放问题(每年约 37 Gt),CO 2 电解槽和组件以及上游和下游相关技术必须以千兆瓦规模部署。这带来了性能以外的巨大挑战,例如资源可用性、部署可读性和报废系统管理,而这些现在都被忽视了。在这篇综述中,我们分析了随着 CO 2 E 部署接近十吨级规模而面临的资源挑战,并考虑了重点关注相关材料及其相应的全球变暖影响的生命周期评估。我们确定了与膜、电极支撑和阳极材料等相关的可扩展性瓶颈,并讨论了对更稳定的碳效率系统和材料回收策略的需求。最后,我们提出了合理设计材料以实现十亿吨规模可持续二氧化碳捕获和电解的潜在方法。

更新日期:2024-06-25
down
wechat
bug