Research in Science Education ( IF 2.2 ) Pub Date : 2024-06-24 , DOI: 10.1007/s11165-024-10177-2 Kason Ka Ching Cheung , Jack K. H. Pun , Wangyin Li
ChatGPT becomes a prominent tool for students’ learning of science when students read its scientific texts. Students read to learn about climate change misinformation using ChatGPT, while they develop critical awareness of the content, linguistic features as well as nature of AI and science to comprehend these texts. In this exploratory study, we investigated students’ reading performance in comprehending two ChatGPT-generated socio-scientific texts, with one focusing on cognitive-epistemic aspects of climate science and another one focusing on social-institutional aspects of climate science. We theorized such reading of ChatGPT-generated outputs as encompassing the content-interpretation, genre-reasoning and epistemic-evaluation domains. Combining Rasch partial-credit model and qualitative analysis, we explored and investigated how a total of 117 junior secondary students (grades 8 to 9) read such texts. Moreover, we also examined how 55 students’ holistic reading of socio-scientific texts on climate change in a ChatGPT scenario changes after a reading-science intervention. Our findings indicate that the content-interpretation was the easiest while the epistemic-evaluation domains were the most difficult. Interestingly, after the reading-science intervention, many students developed their tentative view on nature of science when they evaluated ChatGPT’s claims; while a small increase in number of students discussed reliability and non-epistemic nature of AI when they evaluated ChatGPT’s claims in relation to climate change. The findings also drive a pedagogical model that improves students’ holistic reading of socio-scientific texts generated by ChatGPT.
中文翻译:
ChatGPT 场景中学生对气候变化社会科学文本的整体阅读
当学生阅读科学文本时,ChatGPT 就成为学生学习科学的重要工具。学生使用 ChatGPT 阅读以了解气候变化错误信息,同时培养对内容、语言特征以及人工智能和科学本质的批判意识,以理解这些文本。在这项探索性研究中,我们调查了学生在理解 ChatGPT 生成的两篇社会科学文本方面的阅读表现,其中一篇侧重于气候科学的认知认知方面,另一篇侧重于气候科学的社会制度方面。我们将这种对 ChatGPT 生成输出的阅读理论化为涵盖内容解释、类型推理和认知评估领域。结合Rasch部分学分模型和定性分析,我们对117名初中生(8至9年级)如何阅读此类课文进行了探索和调查。此外,我们还研究了 55 名学生在 ChatGPT 场景中对气候变化社会科学文本的整体阅读在阅读科学干预后有何变化。我们的研究结果表明,内容解释是最简单的,而认知评估领域是最困难的。有趣的是,在阅读科学干预之后,许多学生在评价 ChatGPT 的主张时,对科学本质产生了初步的看法;而在评估 ChatGPT 与气候变化相关的主张时,讨论人工智能可靠性和非认知性质的学生人数略有增加。这些发现还推动了一种教学模型的发展,该模型可以提高学生对 ChatGPT 生成的社会科学文本的整体阅读能力。