当前位置:
X-MOL 学术
›
Quantum Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spin resonance spectroscopy with an electron microscope
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-06-24 , DOI: 10.1088/2058-9565/ad52bc Philipp Haslinger , Stefan Nimmrichter , Dennis Rätzel
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-06-24 , DOI: 10.1088/2058-9565/ad52bc Philipp Haslinger , Stefan Nimmrichter , Dennis Rätzel
Coherent spin resonance methods, such as nuclear magnetic resonance and electron spin resonance spectroscopy, have led to spectrally highly sensitive, non-invasive quantum imaging techniques. Here, we propose a pump-probe spin resonance spectroscopy approach, designed for electron microscopy, based on microwave pump fields and electron probes. We investigate how quantum spin systems couple to electron matter waves through their magnetic moments and how the resulting phase shifts can be utilized to gain information about the states and dynamics of these systems. Notably, state-of-the-art transmission electron microscopy provides the means to detect phase shifts almost as small as that due to a single electron spin. This could enable state-selective observation of spin dynamics on the nanoscale and indirect measurement of the environment of the examined spin systems, providing information, for example, on the atomic structure, local chemical composition and neighboring spins.
中文翻译:
使用电子显微镜的自旋共振波谱
相干自旋共振方法,如核磁共振和电子自旋共振波谱,导致了光谱高度敏感的非侵入性量子成像技术。在这里,我们提出了一种基于微波泵场和电子探针的泵浦-探针自旋共振波谱方法,专为电子显微镜而设计。我们研究了量子自旋系统如何通过其磁矩与电子物质波耦合,以及如何利用由此产生的相移来获取有关这些系统的状态和动力学的信息。值得注意的是,最先进的透射电子显微镜提供了检测相移的方法,其范围几乎与单个电子自旋引起的相移一样小。这可以实现在纳米尺度上对自旋动力学进行状态选择性观察,并间接测量所检查的自旋系统的环境,从而提供原子结构、局部化学成分和邻近自旋等信息。
更新日期:2024-06-24
中文翻译:
使用电子显微镜的自旋共振波谱
相干自旋共振方法,如核磁共振和电子自旋共振波谱,导致了光谱高度敏感的非侵入性量子成像技术。在这里,我们提出了一种基于微波泵场和电子探针的泵浦-探针自旋共振波谱方法,专为电子显微镜而设计。我们研究了量子自旋系统如何通过其磁矩与电子物质波耦合,以及如何利用由此产生的相移来获取有关这些系统的状态和动力学的信息。值得注意的是,最先进的透射电子显微镜提供了检测相移的方法,其范围几乎与单个电子自旋引起的相移一样小。这可以实现在纳米尺度上对自旋动力学进行状态选择性观察,并间接测量所检查的自旋系统的环境,从而提供原子结构、局部化学成分和邻近自旋等信息。