当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biotic regulation of phoD-encoding gene bacteria on organic phosphorus mineralization in lacustrine sediments with distinct trophic levels
Water Research ( IF 11.4 ) Pub Date : 2024-06-20 , DOI: 10.1016/j.watres.2024.121980
Hezhong Yuan , Qianhui Yuan , Tong Guan , Yiwei Cai , Enfeng Liu , Bin Li , Yu Wang

Organic phosphorus (Po) mineralization hydrolyzed by alkaline phosphatase (APase) can replenish bioavailable P load in the sediment water ecosystem of lakes. However, the understanding about the interaction between P load and bacteria community encoding APase generation in the sediment are still limited. Different P pools in the sediments from Taihu Lake, China were measured using sequential extraction procedure. The APAase activity (APA) were obtained accompanying with enzymatic dynamical parameters Vmax and Km. The abundances and diversity of gene phoD-harboring bacterial communities were assessed using high throughput sequencing. The analysis results showed the decrease of potentially bioavailable P fractions including MgCl-P and Fe-P along sampling gradient southwards together with active P concentrations in the water. Conversely, increasing APA and absolute abundance of phoD gene were found with the decreasing of P loads southwards. Positive correlation ( < 0.05) between absolute abundance and APA indicated that phoD-encoding bacteria manipulated the APA and Po mineralization. Negative correlation ( < 0.01) suggested that the APA was restrained by high P load and was promoted under low P condition. However, higher Vmax and Km values suggested that high mineralization potential of Po maintained the high concentrations of potentially bioavailable P even the APA was restricted. The abundance increase of predominant genus (from 15.51 to 24.34 %) mirrored by the reduced abundance (from 24.65 to 1036 %) was speculated to be responsible for the APA promotion under low P condition. Higher diversity indices in the high P scenario suggested that high P load stimulated the ecological diversity of gene phoD-encoding bacteria community. Generally, rare taxa such as having high connected degrees in bacterial communities together with abundant genera synergistically manipulated the phoD gene abundance and APase generation. Interaction between P fractions and bacteria encoding phoD gene determined the eutrophication status in the lacustrine ecosystem.
更新日期:2024-06-20
down
wechat
bug