当前位置:
X-MOL 学术
›
Decis. Support Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An adaptive simulation based decision support approach to respond risk propagation in new product development projects
Decision Support Systems ( IF 6.7 ) Pub Date : 2024-06-16 , DOI: 10.1016/j.dss.2024.114270 Shanshan Liu , Ronggui Ding , Lei Wang
Decision Support Systems ( IF 6.7 ) Pub Date : 2024-06-16 , DOI: 10.1016/j.dss.2024.114270 Shanshan Liu , Ronggui Ding , Lei Wang
Developing new products by multiple stakeholders is inclined to project delays and even failures due to complex risk propagation, calling for accurate predictions of varying risk states and stakeholders' potential response actions. This study proposes an adaptive simulation-based decision support approach, starting with an adaptive simulation model capable of generating future intervention actions on risk propagation by mimicking stakeholders' risk response decisions. Accordingly, the approach tailors a genetic algorithm to solve the proposed simulation optimization problem and produce a combination of response actions that optimally block risk propagation at the current stage. To control dynamic propagations timely, this approach allows managers to adjust risk control resources in line with the latest risk states, and become accessible to managers by developing a graphical user interface. The application to a real project enables the validation of the usefulness and practicality of the approach.
中文翻译:
基于自适应仿真的决策支持方法,用于响应新产品开发项目中的风险传播
多个利益相关者共同开发新产品,容易因复杂的风险传播而导致项目延误甚至失败,需要准确预测不同的风险状态和利益相关者的潜在应对行动。本研究提出了一种基于自适应模拟的决策支持方法,从自适应模拟模型开始,该模型能够通过模仿利益相关者的风险应对决策来生成未来对风险传播的干预行动。因此,该方法定制遗传算法来解决所提出的模拟优化问题,并产生在当前阶段最佳地阻止风险传播的响应行动组合。为了及时控制动态传播,该方法允许管理人员根据最新的风险状态调整风控资源,并通过开发图形用户界面供管理人员访问。实际项目的应用可以验证该方法的实用性和实用性。
更新日期:2024-06-16
中文翻译:
基于自适应仿真的决策支持方法,用于响应新产品开发项目中的风险传播
多个利益相关者共同开发新产品,容易因复杂的风险传播而导致项目延误甚至失败,需要准确预测不同的风险状态和利益相关者的潜在应对行动。本研究提出了一种基于自适应模拟的决策支持方法,从自适应模拟模型开始,该模型能够通过模仿利益相关者的风险应对决策来生成未来对风险传播的干预行动。因此,该方法定制遗传算法来解决所提出的模拟优化问题,并产生在当前阶段最佳地阻止风险传播的响应行动组合。为了及时控制动态传播,该方法允许管理人员根据最新的风险状态调整风控资源,并通过开发图形用户界面供管理人员访问。实际项目的应用可以验证该方法的实用性和实用性。