当前位置:
X-MOL 学术
›
Fract. Calc. Appl. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Qualitative properties of fractional convolution elliptic and parabolic operators in Besov spaces
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-06-21 , DOI: 10.1007/s13540-024-00302-3 Veli Shakhmurov , Rishad Shahmurov
中文翻译:
Besov 空间中分数卷积椭圆和抛物线算子的定性性质
更新日期:2024-06-22
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-06-21 , DOI: 10.1007/s13540-024-00302-3 Veli Shakhmurov , Rishad Shahmurov
The maximal \(B_{p,q}^{s}\)-regularity properties of a fractional convolution elliptic equation is studied. Particularly, it is proven that the operator generated by this nonlocal elliptic equation is sectorial in \( B_{p,q}^{s}\) and also is a generator of an analytic semigroup. Moreover, well-posedeness of nonlocal fractional parabolic equation in Besov spaces is obtained. Then by using the \(B_{p,q}^{s}\)-regularity properties of linear problem, the existence, uniqueness of maximal regular solution of corresponding fractional nonlinear equation is established.
中文翻译:
Besov 空间中分数卷积椭圆和抛物线算子的定性性质
研究了分数阶卷积椭圆方程的最大\(B_{p,q}^{s}\)正则性性质。特别地,证明了该非局部椭圆方程生成的算子在\(B_{p,q}^{s}\)中是扇形的,并且是一个解析半群的生成元。此外,还得到了Besov空间中非局部分数式抛物型方程的适定性。然后利用线性问题的\(B_{p,q}^{s}\)正则性性质,建立相应分数阶非线性方程最大正则解的存在唯一性。