npj Quantum Information ( IF 6.6 ) Pub Date : 2024-06-22 , DOI: 10.1038/s41534-024-00856-3 Krishanu Sankar , Artur Scherer , Satoshi Kako , Sam Reifenstein , Navid Ghadermarzy , Willem B. Krayenhoff , Yoshitaka Inui , Edwin Ng , Tatsuhiro Onodera , Pooya Ronagh , Yoshihisa Yamamoto
We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We use MaxCut problems as a reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms. For each algorithm, we analyze its performance in solving two types of MaxCut problems: weighted graph instances with randomly generated edge weights attaining 21 equidistant values from −1 to 1; and randomly generated Sherrington–Kirkpatrick (SK) spin glass instances. We empirically find a significant performance advantage for the studied MFB-CIM in comparison to the other two algorithms. We empirically observe a sub-exponential scaling for the median TTS for the MFB-CIM, in comparison to the almost exponential scaling for DAQC and the proven \(\widetilde{{{{\mathcal{O}}}}}\left(\sqrt{{2}^{n}}\right)\) scaling for DH-QMF. We conclude that the MFB-CIM outperforms DAQC and DH-QMF in solving MaxCut problems.
中文翻译:
组合优化量子算法的基准研究
我们研究了用于组合优化的三种量子算法的性能扩展:测量反馈相干伊辛机 (MFB-CIM)、离散绝热量子计算 (DAQC) 和用于量子最小值发现的 Dürr–Høyer 算法 (DH-QMF),即基于格罗弗的搜索。我们使用 MaxCut 问题作为比较的参考,并使用解决时间 (TTS) 作为这些优化算法性能的实际衡量标准。对于每种算法,我们分析其在解决两类 MaxCut 问题中的性能:具有随机生成的边权重的加权图实例,获得从 -1 到 1 的 21 个等距值;以及随机生成的 Sherrington–Kirkpatrick (SK) 自旋玻璃实例。我们凭经验发现,与其他两种算法相比,所研究的 MFB-CIM 具有显着的性能优势。与 DAQC 的近指数缩放和经过验证的 \(\widetilde{{{{\mathcal{O}}}}}\left( \sqrt{{2}^{n}}\right)\) DH-QMF 的缩放。我们得出的结论是,MFB-CIM 在解决 MaxCut 问题方面优于 DAQC 和 DH-QMF。