当前位置: X-MOL 学术Sci. China Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MnO-pillared graphene blocks enabling the ultrastable and ultrafast aqueous zinc ion batteries
Science China Chemistry ( IF 10.4 ) Pub Date : 2024-06-20 , DOI: 10.1007/s11426-024-1974-1
Zheng Liu , Zhipeng Qiu , Zhiyuan Li , Tong Wei , Zhuangjun Fan , Huan Pang

Due to the low cost, high theoretical capacity, and environmental friendliness, manganese-based cathodes are regarded as promising alternatives for aqueous zinc ion batteries (AZIBs). However, the practicality of the zinc-manganese system is faced with great challenges, such as the inevitable structural collapse of the cathode and controversial energy storage mechanisms. Herein, we propose a novel concept of spatial deposition mechanism through the addition of MnSO4 additives in the MnO-pillared graphene blocks (G-MnO). The covalent interface between MnO nanoparticles and multilayered graphene nanosheets can construct an in-built micro-electric field, which is beneficial for consecutive electron transfer (in both horizontal and vertical directions). On this basis, the surficial activity of MnO confined in the interlayered nano-space is greatly enhanced and provides enough spatial deposition and subsequent reaction site for MnSO4 additives, thus firstly extending the surficial controlled process to stereoscopic space, effectively improving the electrochemical performance of AZIBs. Therefore, the assembled Zn//G-MnO battery exhibits an excellent rate capability of 281.5 mAh g−1at 0.1 A g−1and 106 mAh g−1at 20 A g−1, and impressive cycling stability (93 mAh g−1 remaining after 5,000 cycles). This finding may provide a new opportunity for the rational design of surficial controlled energy storage and conversion devices.



中文翻译:


MnO 柱石墨烯块可实现超稳定和超快的水系锌离子电池



由于成本低、理论容量高和环境友好,锰基正极被认为是水性锌离子电池(AZIB)的有前途的替代品。然而,锌锰体系的实用化面临着巨大的挑战,例如不可避免的阴极结构崩溃和有争议的储能机制。在此,我们通过在 MnO 柱石墨烯块(G-MnO)中添加 MnSO 4 添加剂,提出了一种空间沉积机制的新概念。 MnO纳米粒子和多层石墨烯纳米片之间的共价界面可以构建内置的微电场,这有利于连续的电子转移(在水平和垂直方向)。在此基础上,限制在层间纳米空间中的MnO的表面活性大大增强,为MnSO 4 添加剂提供了足够的空间沉积和后续反应位点,从而首次将表面控制过程扩展到立体空间,有效提高AZIBs的电化学性能。因此,组装的Zn//G-MnO电池在0.1 A g −1 时表现出优异的倍率性能,分别为281.5 mAh g −1 和106 mAh g −1 。 20 A g −1 和令人印象深刻的循环稳定性(5,000 次循环后剩余 93 mAh g −1 )。这一发现可能为表面控制能量存储和转换装置的合理设计提供新的机遇。

更新日期:2024-06-22
down
wechat
bug