当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trajectory/propulsion integrated design optimization of the manned lunar lander propelled by hybrid rocket motors using analytical target cascading
Acta Astronautica ( IF 3.1 ) Pub Date : 2024-06-17 , DOI: 10.1016/j.actaastro.2024.06.030
Zhu Hao , Li Xintong , Zhang Yuanjun , Liu Yang , Tian Hui , Cai Guobiao

Lunar missions are currently experiencing a significant surge in popularity, presenting expansive opportunities for further exploration and development. To thoroughly explore the design margins and potential of lunar landers, and to foster the development of overall designs driven by comprehensive performance objectives, it is crucial to conduct optimization design considering the coupling between key disciplines such as trajectory and propulsion. Considering the significant increase in computational complexity caused by conducting trajectory/propulsion integrated design optimization, the analytical target cascading method is employed to hierarchically decompose and coordinate optimization of the complex systems. This article presents a phased soft-landing strategy on the manned lunar lander propelled by hybrid rocket motors, utilizing powered explicit guidance and Apollo powered descent guidance, and proceeds with the trajectory/propulsion integrated design optimization involving diverse grain shapes and feed systems. This optimization process is separately undertaken utilizing multidisciplinary feasible method and analytical target cascading method. The analysis reveals that integrating trajectory and propulsion considerations into the optimization process facilitates a 5 % reduction in the overall mass relative to optimizations constrained solely by velocity increment and lack comprehensive trajectory design considerations. This highlights the profound impact of trajectory requirements on propulsion system design and the advantages of powered explicit guidance laws in minimizing fuel consumption. Crucially, the use of analytical target cascading achieves the better optimization results, and significantly reduces subsystem evaluation times, enhancing operational efficiency by 48 %, demonstrating the advantage in handling complex, large-scale systems. On another level, with different values, the Mean Relative Error of the target values for the three schemes obtained by the analytical target cascading method is 0.0016, indicating good stability and strong robustness. The practical exploration in this article provides methods and frameworks for high-performance optimization design of complex aerospace mission profiles in the future.

中文翻译:


基于分析目标级联的混合火箭发动机驱动载人月球着陆器弹道/推进一体化设计优化



目前,探月任务的受欢迎程度大幅上升,为进一步探索和开发提供了广阔的机会。为了深入挖掘月球着陆器的设计余量和潜力,促进综合性能目标驱动的总体设计发展,考虑轨道与推进等关键学科之间的耦合进行优化设计至关重要。考虑到轨迹/推进一体化设计优化导致计算复杂度显着增加,采用分析目标级联方法对复杂系统进行层次分解和坐标优化。本文提出了混合火箭发动机驱动的载人月球着陆器采用动力显式制导和阿波罗动力下降制导的分阶段软着陆策略,并进行了涉及不同颗粒形状和进给系统的轨迹/推进集成设计优化。该优化过程是利用多学科可行方法和分析目标级联方法分别进行的。分析表明,相对于仅受速度增量约束且缺乏综合轨迹设计考虑的优化,将轨迹和推进考虑因素集成到优化过程中有助于将总体质量减少 5%。这凸显了轨迹要求对推进系统设计的深远影响以及动力显式制导律在最小化燃料消耗方面的优势。 至关重要的是,使用分析目标级联实现了更好的优化结果,并显着减少了子系统评估次数,使运行效率提高了48%,展现了处理复杂、大规模系统的优势。另一方面,在不同取值情况下,解析目标级联法得到的三个方案的目标值的平均相对误差均为0.0016,稳定性好,鲁棒性强。本文的实践探索为未来复杂航天任务剖面的高性能优化设计提供了方法和框架。
更新日期:2024-06-17
down
wechat
bug