当前位置:
X-MOL 学术
›
Engineering
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots
Engineering ( IF 10.1 ) Pub Date : 2024-05-21 , DOI: 10.1016/j.eng.2024.05.004 Xiaoxuan Zhang , Hanxu Chen , Taiyu Song , Jinglin Wang , Yuanjin Zhao
Engineering ( IF 10.1 ) Pub Date : 2024-05-21 , DOI: 10.1016/j.eng.2024.05.004 Xiaoxuan Zhang , Hanxu Chen , Taiyu Song , Jinglin Wang , Yuanjin Zhao
Investigation of patient-derived primary tissues is of great importance in the biomedical field, but recent tissue slicing and cultivation techniques still have difficulties in satisfying clinical requirements. Here, we propose a controllable histotomy strategy that utilizes hierarchical magnetic microneedle array robots to tailor primary tissues and establish the desired high-throughput tissue-on-a-chip. This histotomy is performed using a three-dimensional printed, mortise-tenon-structured slicing device coupled with a magnetic-particle-loaded and pagoda-shaped microneedle array scaffold. Due to the multilayered structure of these microneedles, tissue specimens can be fixed onto the microneedle scaffold via mechanical interlocking, thereby effectively avoiding tissue slipping during the slicing process. Owing to the encapsulation of magnetic microneedle fragments, these tissue pieces can act as magnetically responsive biohybrid microrobots and can be easily manipulated by magnetic fields, facilitating their separation, transportation, and dynamic culture. Using this strategy, we demonstrate that primary pancreatic cancer tissues can be tailored into tiny pieces and cultured in multilayered microfluidic chips for efficient high-throughput drug screening, indicating the promising future of this technique’s application in clinical settings.
中文翻译:
基于分层磁性微针阵列机器人的可控组剪
患者来源的原代组织的研究在生物医学领域具有重要意义,但近年来的组织切片和培养技术仍难以满足临床需求。在这里,我们提出了一种可控的组织切开策略,该策略利用分层磁性微针阵列机器人来定制原代组织并建立所需的高通量组织芯片。这种组织切开术是使用 3D 打印的榫卯结构切片装置与磁珠负载和宝塔形微针阵列支架相结合进行的。由于这些微针的多层结构,组织标本可以通过机械联锁固定在微针支架上,从而有效避免了切片过程中的组织滑动。由于磁性微针片段的封装,这些组织碎片可以充当磁响应性生物混合微型机器人,并且可以很容易地被磁场操纵,促进它们的分离、运输和动态培养。使用这种策略,我们证明了原发性胰腺癌组织可以被定制成小块并在多层微流控芯片中培养,以进行高效的高通量药物筛选,这表明该技术在临床环境中应用的前景光明。
更新日期:2024-05-21
中文翻译:
基于分层磁性微针阵列机器人的可控组剪
患者来源的原代组织的研究在生物医学领域具有重要意义,但近年来的组织切片和培养技术仍难以满足临床需求。在这里,我们提出了一种可控的组织切开策略,该策略利用分层磁性微针阵列机器人来定制原代组织并建立所需的高通量组织芯片。这种组织切开术是使用 3D 打印的榫卯结构切片装置与磁珠负载和宝塔形微针阵列支架相结合进行的。由于这些微针的多层结构,组织标本可以通过机械联锁固定在微针支架上,从而有效避免了切片过程中的组织滑动。由于磁性微针片段的封装,这些组织碎片可以充当磁响应性生物混合微型机器人,并且可以很容易地被磁场操纵,促进它们的分离、运输和动态培养。使用这种策略,我们证明了原发性胰腺癌组织可以被定制成小块并在多层微流控芯片中培养,以进行高效的高通量药物筛选,这表明该技术在临床环境中应用的前景光明。