当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photochemical Tuning of Tricoordinated Nitrogen Deficiency in Carbon Nitride to Create Delocalized π Electron Clouds for Efficient CO2 Photoreduction
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-06-21 , DOI: 10.1021/acscatal.4c01636 Lei Li 1 , Huanhuan Liu 2 , Chao Cheng 1 , Xinyan Dai 3 , Fang Chen 4 , Jiqiang Ning 5 , Wentao Wang 6 , Yong Hu 2
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-06-21 , DOI: 10.1021/acscatal.4c01636 Lei Li 1 , Huanhuan Liu 2 , Chao Cheng 1 , Xinyan Dai 3 , Fang Chen 4 , Jiqiang Ning 5 , Wentao Wang 6 , Yong Hu 2
Affiliation
Precisely engineering point defects holds promise for the development of state-of-the-art photocatalysts for CO2 conversion. This study demonstrates the controllable creation of nitrogen vacancies (VNs) in the centers of heptazine rings of graphitic carbon nitrides (g-C3N4) via a photochemical-assisted nitrogen etching strategy. Spectroscopic analyses and theoretical simulations elucidate the photochemical process to hydrogenate the nitrogen situated at the center of the g-C3N4 heptazine ring and then release an ammonia molecule, accompanied by the photooxidation of the sacrificial agents. The catalyst with an optimal VNs concentration achieves a CO generation rate of 35.2 μmol g–1 h–1 with nearly 100% selectivity, comparable to the performance of the reported g-C3N4 materials. The remarkably improved photoactivity is due to the adjustments of the electronic structures and the midgap states of g-C3N4 by the delocalized π electron cloud created in the 12-membered ring surrounding the VN, which maximizes the light-harvesting efficiencies and suppresses the recombination of photogenerated electrons and holes. The VNs also activates the neighboring catalytic carbon centers to reduce the energy barrier for CO2 reduction. This work provides a good design concept to regulate catalytic activity by engineering point defects.
中文翻译:
氮化碳中三配位氮缺乏的光化学调节,产生离域 π 电子云,实现高效 CO2 光还原
精确设计的点缺陷有望开发用于 CO 2 转化的最先进的光催化剂。这项研究表明,通过光化学作用,可以在石墨碳氮化物(g-C 3 N 4 )的七嗪环中心可控地产生氮空位(V Ns )。 -辅助氮蚀刻策略。光谱分析和理论模拟阐明了光化学过程,氢化位于 g-C 3 N 4 庚嗪环中心的氮,然后释放出氨分子,同时伴随着光氧化牺牲剂。具有最佳V Ns 浓度的催化剂实现了35.2 μmol g –1 h –1 的CO生成率,且选择性接近100%,与催化剂的性能相当。报道了 g-C 3 N 4 材料。光活性显着提高是由于围绕V的12元环中产生的离域π电子云对g-C 3 N 4 的电子结构和中带隙态进行了调整 N ,最大限度地提高光捕获效率并抑制光生电子和空穴的复合。 V Ns 还会激活邻近的催化碳中心,以降低 CO 2 还原的能垒。这项工作为通过工程点缺陷调节催化活性提供了良好的设计理念。
更新日期:2024-06-21
中文翻译:
氮化碳中三配位氮缺乏的光化学调节,产生离域 π 电子云,实现高效 CO2 光还原
精确设计的点缺陷有望开发用于 CO 2 转化的最先进的光催化剂。这项研究表明,通过光化学作用,可以在石墨碳氮化物(g-C 3 N 4 )的七嗪环中心可控地产生氮空位(V Ns )。 -辅助氮蚀刻策略。光谱分析和理论模拟阐明了光化学过程,氢化位于 g-C 3 N 4 庚嗪环中心的氮,然后释放出氨分子,同时伴随着光氧化牺牲剂。具有最佳V Ns 浓度的催化剂实现了35.2 μmol g –1 h –1 的CO生成率,且选择性接近100%,与催化剂的性能相当。报道了 g-C 3 N 4 材料。光活性显着提高是由于围绕V的12元环中产生的离域π电子云对g-C 3 N 4 的电子结构和中带隙态进行了调整 N ,最大限度地提高光捕获效率并抑制光生电子和空穴的复合。 V Ns 还会激活邻近的催化碳中心,以降低 CO 2 还原的能垒。这项工作为通过工程点缺陷调节催化活性提供了良好的设计理念。