当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical Properties and Recyclability of Fiber Reinforced Polyester Composites
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-06-20 , DOI: 10.1021/acssuschemeng.4c03341
Eloise K Billington 1, 2 , Theona Şucu 1, 2 , Michael P Shaver 1, 2
Affiliation  

Fiber reinforced polymer composites (FRPs) are valuable construction materials owing to their strength, durability, and design flexibility; however, conventional FRPs utilize petroleum-based polymer matrices with limited recyclability. Furthermore, fiber reinforcements are made from nonrenewable feedstocks, through expensive and energy intensive processes, making recovery and reuse advantageous. Thus, FRPs that use biobased and degradable or reprocessable matrices would enable a more sustainable product, as both components can be recovered and reused. We previously developed a family of degradable and reprocessable cross-linked polyesters from bioderived cyclic esters (l-lactide, δ-valerolactone, and ε-caprolactone) copolymerized with a bis(1,3-dioxolan-4-one) cross-linker. We now incorporate these networks into FRPs and demonstrate degradability of the matrix into tartaric acid and oligomers, enabling recovery and reuse of the fiber reinforcement. Furthermore, the effect of varying comonomer structure, catalyst, reinforcement type, and lay-up method on mechanical properties of the resultant FRPs is explored. The FRPs produced have tensile strengths of up to 202 MPa and Young’s moduli up to 25 GPa, promising evidence that sustainable FRPs can rival the mechanical properties of conventional high performance FRPs.

中文翻译:


纤维增强聚酯复合材料的机械性能和可回收性



纤维增强聚合物复合材料 (FRP) 因其强度、耐用性和设计灵活性而成为有价值的建筑材料;然而,传统的玻璃钢采用石油基聚合物基体,可回收性有限。此外,纤维增强材料是由不可再生原料通过昂贵且能源密集型的工艺制成的,这使得回收和再利用具有优势。因此,使用生物基和可降解或可再加工基质的玻璃钢将成为更可持续的产品,因为两种成分都可以回收和再利用。我们之前开发了一系列可降解和可再加工的交联聚酯,由生物源环酯( l-丙交酯、δ-戊内酯和ε-己内酯)与双(1,3-二氧戊环-4-酮)交联剂共聚而成。现在,我们将这些网络整合到 FRP 中,并证明基质可降解为酒石酸和低聚物,从而实现纤维增强材料的回收和再利用。此外,还探讨了不同的共聚单体结构、催化剂、增强材料类型和铺设方法对所得 FRP 机械性能的影响。所生产的 FRP 的拉伸强度高达 202 MPa,杨氏模量高达 25 GPa,这有力地证明了可持续 FRP 可以与传统高性能 FRP 的机械性能相媲美。
更新日期:2024-06-20
down
wechat
bug