当前位置: X-MOL 学术J. Agric. Food Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Natural Prenylflavonoids from Sophora flavescens Root Bark against Multidrug-Resistant Methicillin-Sensitive Staphylococcus aureus Targeting the Membrane Permeability
Journal of Agricultural and Food Chemistry ( IF 5.7 ) Pub Date : 2024-06-21 , DOI: 10.1021/acs.jafc.4c01430
Xin-Min Li 1 , Yun Gao 1 , Si-Han Wang 1 , Yao-Guang Huang 1 , Guo-Qing Long 1 , Dong-Dong Wang 1 , Rui Zhang 1 , An-Hua Wang 1 , Shao-Hui Huang 2 , Jing-Ming Jia 1
Affiliation  

The overuse of antibiotics in animal farming and aquaculture has led to multidrug-resistant methicillin-sensitive Staphylococcus aureus (MR-MSSA) becoming a common pathogen in foodborne diseases. Sophora flavescens Ait. serves as a traditional plant antibacterial agent and functional food ingredient. A total of 30 compounds (130) were isolated from the root bark of S. flavescens, consisting of 20 new compounds (120). In the biological activity assay, compound 1 demonstrated a remarkable inhibitory effect on MR-MSSA, with an MIC of 2 μg/mL. Furthermore, 1 was found to rapidly eliminate bacteria, inhibit biofilm growth, and exhibit exceptionally low cytotoxicity. Mechanistic studies have revealed that 1 possesses an enhanced membrane-targeting ability, binding to the bacterial cell membrane components phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and cardiolipin (CL). This disruption of bacterial cell membrane integrity increases intracellular reactive oxygen species, protein and DNA leakage, reduced bacterial metabolism, and ultimately bacterial death. In summary, these findings suggest that compound 1 holds promise as a lead compound against MR-MSSA.

中文翻译:


苦参根皮中的天然异戊二烯类黄酮针对多重耐药甲氧西林敏感金黄色葡萄球菌的膜通透性



畜牧业和水产养殖中抗生素的过度使用导致多重耐药甲氧西林敏感金黄色葡萄球菌(MR-MSSA)成为食源性疾病的常见病原体。苦参 Ait。作为传统植物抗菌剂和功能性食品成分。从苦参根皮中分离得到 30 种化合物 (1-30),其中 20 种新化合物 (1-20)。在生物活性测定中,化合物1对MR-MSSA具有显着的抑制作用,MIC为2 μg/mL。此外,1被发现可以快速消除细菌,抑制生物膜生长,并表现出极低的细胞毒性。机理研究表明,1 具有增强的膜靶向能力,可与细菌细胞膜成分磷脂酰甘油 (PG)、磷脂酰乙醇胺 (PE) 和心磷脂 (CL) 结合。细菌细胞膜完整性的破坏增加了细胞内活性氧、蛋白质和 DNA 的泄漏,减少了细菌的新陈代谢,最终导致细菌死亡。总之,这些发现表明化合物 1 有希望作为 MR-MSSA 的先导化合物。
更新日期:2024-06-21
down
wechat
bug