当前位置:
X-MOL 学术
›
Int. J. Min. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model
International Journal of Mining Science and Technology ( IF 11.7 ) Pub Date : 2024-05-31 , DOI: 10.1016/j.ijmst.2024.04.011 Jun Guo , Wenbo Huang , Guorui Feng , Jinwen Bai , Lirong Li , Zi Wang , Luyang Yu , Xiaoze Wen , Jie Zhang , Wenming Feng
International Journal of Mining Science and Technology ( IF 11.7 ) Pub Date : 2024-05-31 , DOI: 10.1016/j.ijmst.2024.04.011 Jun Guo , Wenbo Huang , Guorui Feng , Jinwen Bai , Lirong Li , Zi Wang , Luyang Yu , Xiaoze Wen , Jie Zhang , Wenming Feng
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process. In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem, this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino, Griddle and FLAC3D, which can realize the simulation of different working conditions. Based on this model, the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched. Firstly, under different support intensity, the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage” evolution characteristics. The influence range of support intensity is 15%–30%. Secondly, 1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area. Thirdly, within a displacement range of 2.76 m from the coal wall, a support strength of 1.5 MPa provides optimal control of the horizontal displacement of the coal.
中文翻译:
基于创新数值液压支架模型的特厚煤层长壁放顶煤工作面稳定性分析
支架与围岩的关系对于采矿过程中围岩的控制具有重要意义。针对现有数值模拟方法大多通过构建虚拟单元和应力伺服控制来近似替代液压支架问题,本文通过集成建立与实际液压支架具有相同工作特性的新型液压支架数值模型。数值模拟软件Rhino、Griddle、FLAC3D,可实现不同工况的模拟。基于该模型,研究了特厚煤层放顶煤工作面前液压支架支护强度对围岩应力调节和煤体稳定性的影响机制。首先,不同支护强度下,承载煤及其前方煤的支承压力呈现“三阶段”演化特征。支持强度的影响范围为15%~30%。其次,1.5MPa是支护强度对前煤破坏区所能产生影响的上限。第三,在距离煤壁2.76 m的位移范围内,1.5 MPa的支撑强度可以对煤体的水平位移进行最佳控制。
更新日期:2024-05-31
中文翻译:
基于创新数值液压支架模型的特厚煤层长壁放顶煤工作面稳定性分析
支架与围岩的关系对于采矿过程中围岩的控制具有重要意义。针对现有数值模拟方法大多通过构建虚拟单元和应力伺服控制来近似替代液压支架问题,本文通过集成建立与实际液压支架具有相同工作特性的新型液压支架数值模型。数值模拟软件Rhino、Griddle、FLAC3D,可实现不同工况的模拟。基于该模型,研究了特厚煤层放顶煤工作面前液压支架支护强度对围岩应力调节和煤体稳定性的影响机制。首先,不同支护强度下,承载煤及其前方煤的支承压力呈现“三阶段”演化特征。支持强度的影响范围为15%~30%。其次,1.5MPa是支护强度对前煤破坏区所能产生影响的上限。第三,在距离煤壁2.76 m的位移范围内,1.5 MPa的支撑强度可以对煤体的水平位移进行最佳控制。