当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting Aluminum Adsorption and Deposition on Single-Atom Catalysts in Aqueous Aluminum-Ion Battery
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-06-20 , DOI: 10.1002/aenm.202401598 Erhai Hu 1 , Bei‐Er Jia 2 , Wei Nong 2 , Chenguang Zhang 2 , Bing Zhu 2 , Dongshuang Wu 2 , Jiawei Liu 3 , Chao Wu 3 , Shibo Xi 3 , Dong Xia 1 , Mingsheng Zhang 4 , Man‐Fai Ng 5 , Afriyanti Sumboja 6 , Kedar Hippalgaonkar 2, 4 , Qingyu Yan 1, 2, 4
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-06-20 , DOI: 10.1002/aenm.202401598 Erhai Hu 1 , Bei‐Er Jia 2 , Wei Nong 2 , Chenguang Zhang 2 , Bing Zhu 2 , Dongshuang Wu 2 , Jiawei Liu 3 , Chao Wu 3 , Shibo Xi 3 , Dong Xia 1 , Mingsheng Zhang 4 , Man‐Fai Ng 5 , Afriyanti Sumboja 6 , Kedar Hippalgaonkar 2, 4 , Qingyu Yan 1, 2, 4
Affiliation
In the quest for sustainable energy storage technologies, lithium-based batteries, despite their prominence, face limitations such as high costs, safety risks, and supply chain issues. This has propelled the exploration of alternative materials, with aqueous aluminum-ion batteries (AAIBs) emerging as a promising candidate due to their high energy density, abundance, and cost-effectiveness. However, the low equilibrium reduction potential of aluminum ions presents significant challenges, including hydrogen evolution and poor cyclability. Addressing these, the study pioneers the application of single-atom catalysts (SACs) in AAIBs, leveraging their high atom utilization and stability to enhance aluminum deposition and suppress hydrogen evolution. Sn, In, Cu, and Ni SACs are evaluated through density functional theory analysis and experimental validation, with Sn SAC identified as the most effective. Subsequently, the Sn SAC based anode demonstrates enhanced performance, achieving stable cycling over 500 h at 0.5 mA cm−2, significantly improved capacity retention (60 mAh g−1@300 cycles), and rate performance (50 mAh g−1@1 A g−1) in full cell tests. This work underscores the potential of SACs in advancing AAIB technology and opens new pathways for energy storage solutions.
中文翻译:
促进水系铝离子电池中单原子催化剂上铝的吸附和沉积
在寻求可持续能源存储技术的过程中,锂基电池尽管很突出,但也面临着成本高、安全风险和供应链问题等限制。这推动了对替代材料的探索,水性铝离子电池(AAIB)因其高能量密度、丰富性和成本效益而成为有前途的候选材料。然而,铝离子的低平衡还原电位带来了重大挑战,包括析氢和循环性能差。针对这些问题,该研究开创了单原子催化剂(SAC)在AAIB中的应用,利用其高原子利用率和稳定性来增强铝沉积并抑制析氢。通过密度泛函理论分析和实验验证对 Sn、In、Cu 和 Ni SAC 进行了评估,其中 Sn SAC 被认为是最有效的。随后,Sn SAC基负极表现出增强的性能,在0.5 mA cm -2下实现了超过500小时的稳定循环,显着提高了容量保持率(60 mAh g -1 @300次循环)和倍率性能(50 mAh g -1 @1)全电池测试中的A g -1 )。这项工作强调了 SAC 在推进 AAIB 技术方面的潜力,并为能源存储解决方案开辟了新途径。
更新日期:2024-06-20
中文翻译:
促进水系铝离子电池中单原子催化剂上铝的吸附和沉积
在寻求可持续能源存储技术的过程中,锂基电池尽管很突出,但也面临着成本高、安全风险和供应链问题等限制。这推动了对替代材料的探索,水性铝离子电池(AAIB)因其高能量密度、丰富性和成本效益而成为有前途的候选材料。然而,铝离子的低平衡还原电位带来了重大挑战,包括析氢和循环性能差。针对这些问题,该研究开创了单原子催化剂(SAC)在AAIB中的应用,利用其高原子利用率和稳定性来增强铝沉积并抑制析氢。通过密度泛函理论分析和实验验证对 Sn、In、Cu 和 Ni SAC 进行了评估,其中 Sn SAC 被认为是最有效的。随后,Sn SAC基负极表现出增强的性能,在0.5 mA cm -2下实现了超过500小时的稳定循环,显着提高了容量保持率(60 mAh g -1 @300次循环)和倍率性能(50 mAh g -1 @1)全电池测试中的A g -1 )。这项工作强调了 SAC 在推进 AAIB 技术方面的潜力,并为能源存储解决方案开辟了新途径。