当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control of proton transport and hydrogenation in double-gated graphene
Nature ( IF 50.5 ) Pub Date : 2024-06-19 , DOI: 10.1038/s41586-024-07435-8
J. Tong , Y. Fu , D. Domaretskiy , F. Della Pia , P. Dagar , L. Powell , D. Bahamon , S. Huang , B. Xin , R. N. Costa Filho , L. F. Vega , I. V. Grigorieva , F. M. Peeters , A. Michaelides , M. Lozada-Hidalgo

The basal plane of graphene can function as a selective barrier that is permeable to protons1,2 but impermeable to all ions3,4 and gases5,6, stimulating its use in applications such as membranes1,2,7,8, catalysis9,10 and isotope separation11,12. Protons can chemically adsorb on graphene and hydrogenate it13,14, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices13,14,15,16,17. However, both processes face energy barriers1,12,18 and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies4,7,8, incorporating catalytic metals1,19 or chemically functionalizing the lattice18,20. But these techniques can compromise other properties, such as ion selectivity21,22 or mechanical stability23. Here we show that independent control of the electric field, E, at around 1 V nm−1, and charge-carrier density, n, at around 1 × 1014 cm−2, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of E and n, which is a new technique for the study of 2D electrode–electrolyte interfaces.



中文翻译:


双门石墨烯中质子传输和氢化的控制



石墨烯的基面可以作为选择性屏障,可渗透质子 1,2 ,但不可渗透所有离子 3,4 和气体 5,6 ,刺激其在应用中的应用如膜 1,2,7,8 、催化 9,10 和同位素分离 11,12 。质子可以化学吸附在石墨烯上并将其氢化 13,14 ,从而引发导体-绝缘体转变,这已在石墨烯电子器件 13,14,15,16,17 中得到深入探索。然而,这两个过程都面临能量障碍 1,12,18 ,并且已经提出了各种策略来加速质子传输,例如通过引入空位 4,7,8 、掺入催化金属 1,19 或化学方法功能化晶格 18,20 。但这些技术可能会损害其他性能,例如离子选择性 21,22 或机械稳定性 23 。在这里,我们展示了在 1 V nm 左右的电场 E −1 和在 1 × 10 14 cm 左右的载流子密度 n 的独立控制 −2 ,在双门石墨烯中,可以将质子传输与晶格氢化解耦,从而加速质子传输,使其接近我们器件的极限电解质电流。质子传输和氢化可以以精确和稳健的方式选择性地驱动,从而使基于质子的逻辑和存储石墨烯器件具有跨越数量级的开关比。我们的结果表明,场效应可以加速和解耦双门二维晶体中的电化学过程,并证明了将此类过程映射为 E 和 n 函数的可能性,这是研究二维电极-电解质界面的新技术。

更新日期:2024-06-20
down
wechat
bug