当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc–air batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-06-20 , DOI: 10.1039/d4ee00042k
Navid Khodayar 1 , Abolhassan Noori 1 , Mohammad S. Rahmanifar 2 , Masumeh Moloudi 1 , Nasim Hassani 3 , Mehdi Neek-Amal 4, 5 , Maher F. El-Kady 6 , Nahla B. Mohamed 6, 7 , Xinhui Xia 8, 9 , Yongqi Zhang 10 , Richard B. Kaner 6, 11 , Mir F. Mousavi 1
Affiliation  

The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni–Co–Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm−2, feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction (ηj=10 = 100 mV), oxygen evolution reaction (ηj=50 = 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V vs. reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm−2, which is lower than that of the benchmark Pt/C(−)–RuO2/C(+) system. The NCMP-based zinc–air battery exhibits a high power density of 148 mW cm−2, a high specific energy of ∼932 W h kgZn−1, and excellent cycling stability of over 6000 cycles at 5 mA cm−2. Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands.

中文翻译:


用于高效水分解和超耐用锌空气电池的超高质量负载过渡金属磷化物电催化剂



发展可持续能源转换和存储技术是缓解日益严重的全球能源危机的有效途径。据报道,一种简便的还原电合成方法,使用 Pluronic P123 作为结构导向剂,制备了一种导电、电化学稳定、多孔 Ni-Co-Mn 磷化物 (NCMP) 电催化剂,其超高质量负载量为 22.6 mg cm −2 ,适合工业级应用。 NCMP电催化剂对析氢反应(η j=10 = 100 mV)、析氧反应(η j=50 = 218 mV)和氧还原反应(半还原反应)表现出优异的三功能电催化活性。 -波电势 = 0.74 V vs. 可逆氢电极)在碱性电解质中。基于 NCMP 的电池在 10 mA cm −2 的速率下提供 1.53 V 的总水分解电压,低于基准 Pt/C(−)–RuO 2 的高功率密度,~932 W h kg Zn −1 的高比能量, 5 mA cm 下循环稳定性超过 6000 次 −2 。通过理论计算进行的机理研究表明,由 Ni、Co 和 Mn 形成的三金属物质是最具催化活性的位点。预计这种新颖的还原电合成方法可以扩展到其他电沉积工艺,并为更好地满足现有和预期的能源需求铺平道路。
更新日期:2024-06-25
down
wechat
bug