当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface charge-reinforced and ion-selective layers for stable metal zinc anode chemistry
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-06-18 , DOI: 10.1039/d4ee01260g
Zhiquan Wei 1 , Shixun Wang 1 , Dedi Li 1 , Shuo Yang 1 , Songde Guo 2 , Guangmeng Qu 3 , Yihan Yang 3 , Hongfei Li 4
Affiliation  

The application of zinc (Zn) metal-based batteries is hindered by the uncontrollable thermodynamic-driven hydrogen evolution reactions and kinetic-induced dendrite growth, resulting in reduced cycling stability and premature battery failure. To tackle these challenges, we introduce a pH-mediated surface charge-reinforced and ion-selective strategy by using a facile self-assembled approach, by which cysteamine (SH–CH2–CH2–NH2) molecular layers (SALs) are in situ constructed on the Zn metal surface (Zn@SCRIS-SALs). Triggered by the pH-mediated-protonation effect, these layers generate a partial positive surface (–NH3+) to repel the hydrated protons and zinc-philic sites (–NH2) for anchoring Zn2+. The synergistic combination of the above effects enabled highly reversible Zn metal chemistry to effectively suppress side reactions and dendrite growth. Zn@SCRIS-SALs in symmetric cells exhibited stability with an ultralong lifespan of 2500 h under a high current density of 10 mA cm−2. The superior reversibility was further ascertained by integrating Zn@SCRIS-SALs with the I2 cathode in full cells, which showed high-capacity retention compared to bare Zn-based cells. Furthermore, 80 mA h pouch cells assembled with Zn@SCRIS-SALs were operated over 2500 cycles at an areal capacity of 5.18 mA h cm−2. This work offers a new platform to finely modulate the electron state of interfacial molecular layers for highly reversible aqueous Zn ion batteries.

中文翻译:


用于稳定金属锌阳极化学的表面电荷增强和离子选择性层



锌(Zn)金属基电池的应用受到不可控的热力学驱动的析氢反应和动力学诱导的枝晶生长的阻碍,导致循环稳定性降低和电池过早失效。为了应对这些挑战,我们通过使用简单的自组装方法引入了 pH 介导的表面电荷增强和离子选择性策略,其中半胱胺 (SH–CH 2 –CH 2 ) 分子层 (SAL) 在 Zn 金属表面 (Zn@SCRIS-SALs) 上原位构建。由 pH 介导的质子化效应触发,这些层产生部分正表面 (–NH 3 + ) 以排斥水合质子和亲锌位点 (–NH 2 ) 用于锚定 Zn 2+ 。上述效应的协同组合使得高度可逆的锌金属化学能够有效抑制副反应和枝晶生长。对称电池中的 Zn@SCRIS-SALs 在 10 mA cm 高电流密度下表现出稳定性,具有 2500 小时的超长寿命 −2 。通过将 Zn@SCRIS-SAL 与全电池中的 I 2 阴极集成,进一步确定了其优异的可逆性,与裸露的锌基电池相比,这显示出高容量保留。此外,用 Zn@SCRIS-SAL 组装的 80 mA h 软包电池在面积容量为 5.18 mA h cm −2 下运行了 2500 多个循环。这项工作为精细调节高度可逆水性锌离子电池界面分子层的电子状态提供了一个新平台。
更新日期:2024-06-18
down
wechat
bug