当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design of Thermal Interface Materials with Excellent Interfacial Heat/Force Transfer Ability via Hierarchical Energy Dissipation
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-06-19 , DOI: 10.1002/adfm.202406075 Chen Zeng 1, 2 , Xiangliang Zeng 1 , Xiaxia Cheng 1 , Yunsong Pang 1 , Jianbin Xu 3 , Rong Sun 1 , Xiaoliang Zeng 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-06-19 , DOI: 10.1002/adfm.202406075 Chen Zeng 1, 2 , Xiangliang Zeng 1 , Xiaxia Cheng 1 , Yunsong Pang 1 , Jianbin Xu 3 , Rong Sun 1 , Xiaoliang Zeng 1
Affiliation
Interfaces play an important role in the heat and stress transfer within applications such as electronic cooling. The coexistence of apparently contradictory properties between heat dissipation and adhesion at interfaces poses a constant challenge for existing interface materials. Herein, a thermal interface material is reported, consisting of epoxy-functionalized polydimethylsiloxane and aluminum fillers with excellent interfacial heat/force transfer ability. This material optimizes the combination of thermal conductivity of 3.46 W m−1 K−1 and adhesion energy of 1.17 kJ m−2. Using two viscoelastic models, the excellent interfacial force transfer ability is attributed to a hierarchical energy dissipation via the introduction of borate ester bonds and the aluminum filler networks. A simple kinetic bond model demonstrates that the borate ester bonds increase molecular chain segment mobility, allowing full extension at debonding interface for stress dispersion and efficient energy dissipation. The aluminum filler networks not only facilitate thermal transfer, but also dissipate the mechanical energy during filler network destruction due to the bond breakage between fillers. The excellent heat dispassion and mechanical stability are further demonstrated when this thermal interface material is used in flexible light emitting diodes and high-power chips. This work provides a new strategy for balancing interfacial heat and force transfer.
中文翻译:
通过分层能量耗散设计具有优异界面热/力传递能力的热界面材料
界面在电子冷却等应用中的热量和应力传递中发挥着重要作用。界面处的散热和粘附之间明显矛盾的特性的共存对现有界面材料提出了持续的挑战。本文报道了一种热界面材料,由环氧官能化聚二甲基硅氧烷和铝填料组成,具有优异的界面热/力传递能力。该材料优化了3.46 W m -1 K -1的导热率和1.17 kJ m -2的粘附能的组合。使用两种粘弹性模型,优异的界面力传递能力归因于通过引入硼酸酯键和铝填料网络实现的分层能量耗散。简单的动力学键模型表明,硼酸酯键增加了分子链段的流动性,允许在脱粘界面处完全延伸,从而实现应力分散和有效的能量耗散。铝填料网络不仅促进热传递,而且在填料网络破坏期间由于填料之间的键断裂而耗散机械能。当该热界面材料应用于柔性发光二极管和大功率芯片时,其优异的散热和机械稳定性得到进一步体现。这项工作提供了平衡界面热和力传递的新策略。
更新日期:2024-06-19
中文翻译:
通过分层能量耗散设计具有优异界面热/力传递能力的热界面材料
界面在电子冷却等应用中的热量和应力传递中发挥着重要作用。界面处的散热和粘附之间明显矛盾的特性的共存对现有界面材料提出了持续的挑战。本文报道了一种热界面材料,由环氧官能化聚二甲基硅氧烷和铝填料组成,具有优异的界面热/力传递能力。该材料优化了3.46 W m -1 K -1的导热率和1.17 kJ m -2的粘附能的组合。使用两种粘弹性模型,优异的界面力传递能力归因于通过引入硼酸酯键和铝填料网络实现的分层能量耗散。简单的动力学键模型表明,硼酸酯键增加了分子链段的流动性,允许在脱粘界面处完全延伸,从而实现应力分散和有效的能量耗散。铝填料网络不仅促进热传递,而且在填料网络破坏期间由于填料之间的键断裂而耗散机械能。当该热界面材料应用于柔性发光二极管和大功率芯片时,其优异的散热和机械稳定性得到进一步体现。这项工作提供了平衡界面热和力传递的新策略。