当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrating Materials in Non-Thermal Plasma Reactors: Challenges and Opportunities
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-18 , DOI: 10.1021/accountsmr.4c00041 Victor Rosa 1 , Fabio Cameli 1 , Georgios D. Stefanidis 1, 2 , Kevin M. Van Geem 1
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-18 , DOI: 10.1021/accountsmr.4c00041 Victor Rosa 1 , Fabio Cameli 1 , Georgios D. Stefanidis 1, 2 , Kevin M. Van Geem 1
Affiliation
Electricity-driven chemical processes play a crucial role in mitigating the CO2 footprint of the process industry. Non-thermal plasmas (NTP) hold significant potential for electrifying the chemical industry by activating molecules through electron-based mechanisms in the absence of thermal equilibrium. However, the broad application of NTPs is hampered by their general inability to direct energy toward a specific chemical pathway, limiting their effectiveness as a selective and scalable technology. Therefore, the integration of NTPs with catalytic materials in a single reactor assembly is being considered more and more to overcome this limitation. Recently, two multifunctional plasma concepts have emerged, demonstrated at small scales. The first concept is in-plasma catalysis (IPC), where a solid catalyst is directly exposed to the plasma discharge. The second concept is post-plasma catalysis (PPC), involving a conventional heterogeneous catalytic step following the plasma activation. Another option explores the combination of non-catalytic materials with plasma, leveraging their distinct physiochemical affinities with molecules for improved selectivity (e.g., membranes and adsorbents), through either in-plasma or post-plasma adoption. Despite these possibilities, the limited understanding of interactions between plasma and surface-adsorbed/permeated species, coupled with discharge-related catalysts and material deactivation, often restricts the design choice to post-plasma catalysis. To harness synergies, energy-efficient NTP technologies are essential. In this context, nanosecond-pulsed discharges (NPDs, also known as nanosecond repetitively pulsed, NRP) emerge as potentially disruptive solutions due to their activation of both electronic and thermal channels. This results in high energy efficiency, facilitating applications such as cleavage of C–C, C–O, and N–N bonds and providing sufficiently high temperatures for thermal integration with post-plasma materials. This integration can be tailored to the NPD product distribution, creating a synergy with conventional materials unique to NTPs and enhancing the overall process throughput.
中文翻译:
在非热等离子体反应器中集成材料:挑战和机遇
电力驱动的化学工艺在减少流程工业的 CO 2足迹方面发挥着至关重要的作用。非热等离子体 (NTP) 在缺乏热平衡的情况下通过基于电子的机制激活分子,具有使化学工业电气化的巨大潜力。然而,NTP 的广泛应用受到其一般无法将能量引导至特定化学途径的阻碍,从而限制了其作为选择性和可扩展技术的有效性。因此,人们越来越多地考虑将 NTP 与催化材料集成在单个反应器组件中,以克服这一限制。最近,出现了两种多功能等离子体概念,并在小规模上进行了演示。第一个概念是等离子体内催化(IPC),其中固体催化剂直接暴露于等离子体放电。第二个概念是等离子体后催化(PPC),涉及等离子体活化后的传统多相催化步骤。另一种选择是探索非催化材料与等离子体的结合,通过等离子体内或等离子体后采用,利用其与分子独特的物理化学亲和力来提高选择性(例如,膜和吸附剂)。尽管存在这些可能性,但对等离子体和表面吸附/渗透物质之间相互作用的有限了解,加上与放电相关的催化剂和材料失活,通常限制了后等离子体催化的设计选择。为了发挥协同作用,节能的 NTP 技术至关重要。 在这种情况下,纳秒脉冲放电(NPD,也称为纳秒重复脉冲,NRP)由于其电子通道和热通道的激活而成为潜在的颠覆性解决方案。这带来了高能源效率,促进了 C-C、C-O 和 N-N 键断裂等应用,并为与后等离子体材料的热集成提供了足够高的温度。这种集成可以根据 NPD 产品分布进行定制,与 NTP 特有的传统材料产生协同作用,并提高整体工艺吞吐量。
更新日期:2024-06-18
中文翻译:
在非热等离子体反应器中集成材料:挑战和机遇
电力驱动的化学工艺在减少流程工业的 CO 2足迹方面发挥着至关重要的作用。非热等离子体 (NTP) 在缺乏热平衡的情况下通过基于电子的机制激活分子,具有使化学工业电气化的巨大潜力。然而,NTP 的广泛应用受到其一般无法将能量引导至特定化学途径的阻碍,从而限制了其作为选择性和可扩展技术的有效性。因此,人们越来越多地考虑将 NTP 与催化材料集成在单个反应器组件中,以克服这一限制。最近,出现了两种多功能等离子体概念,并在小规模上进行了演示。第一个概念是等离子体内催化(IPC),其中固体催化剂直接暴露于等离子体放电。第二个概念是等离子体后催化(PPC),涉及等离子体活化后的传统多相催化步骤。另一种选择是探索非催化材料与等离子体的结合,通过等离子体内或等离子体后采用,利用其与分子独特的物理化学亲和力来提高选择性(例如,膜和吸附剂)。尽管存在这些可能性,但对等离子体和表面吸附/渗透物质之间相互作用的有限了解,加上与放电相关的催化剂和材料失活,通常限制了后等离子体催化的设计选择。为了发挥协同作用,节能的 NTP 技术至关重要。 在这种情况下,纳秒脉冲放电(NPD,也称为纳秒重复脉冲,NRP)由于其电子通道和热通道的激活而成为潜在的颠覆性解决方案。这带来了高能源效率,促进了 C-C、C-O 和 N-N 键断裂等应用,并为与后等离子体材料的热集成提供了足够高的温度。这种集成可以根据 NPD 产品分布进行定制,与 NTP 特有的传统材料产生协同作用,并提高整体工艺吞吐量。