当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cation Exchange-Assisted Hot Injection for PbSe Nanocrystalline Structures Anchored to Sb2S3: Constructing a Deeply Buried Back Interface for Highly Efficient Solar Cells
ACS Photonics ( IF 6.5 ) Pub Date : 2024-06-18 , DOI: 10.1021/acsphotonics.4c00731
Liquan Yao 1 , Ming-Hao Lai 1 , Limei Lin 1 , Dong Wei 1, 2 , Zhigao Huang 1, 2 , Shuiyuan Chen 2 , Guilin Chen 1, 2
Affiliation  

Severe back interface recombination still impedes the enhancement of device performance in Sb2S3 solar cells, primarily due to a plethora of defects derived from suspended bonds at the rear surface of Sb2S3. In contrast to the conventional physical absorption method (i.e., Sb2S3/Spiro-OMeTAD), herein, we develop a novel strategy involving cation exchange-assisted hot injection for the in situ anchoring of PbSe nanocrystalline structures to the surface of Sb2S3. This process successfully establishes a deeply buried back interface, thereby creating a robust chemically bonding bridge for facilitating smooth carrier transfer. Additionally, the energy level arrangement has been tailored by the quantum size effect of PbSe particles to mitigate band offsets at the back interface. Consequently, the decent PbSe substantially reduces the density of surface defects from 2.44 × 1016 to 9.8 × 1015 cm–3, leading to an effective suppression of nonradiative recombination as supported by the reduction in the surface photovoltage. Ultimately, the power conversion efficiency of Sb2S3 solar cells based on the ITO/TiO2/CdS/Sb2S3/PbSe/C/Ag architecture is elevated from 6.78 to 7.34%, representing the highest efficiency achieved for full-inorganic Sb2S3 solar cells to date. This construction tactic of the deeply buried back interface sheds light on the pursuit of highly efficient Sb2S3 solar cells.

中文翻译:


锚定于 Sb2S3 的 PbSe 纳米晶体结构的阳离子交换辅助热注入:构建高效太阳能电池的深埋背界面



严重的背面界面复合仍然阻碍了Sb 2 S 3 太阳能电池器件性能的提高,这主要是由于Sb S 3 。与传统的物理吸收方法(即 Sb 2 S 3 /Spiro-OMeTAD)相比,我们开发了一种涉及阳离子交换辅助热注射的新策略,用于在PbSe 纳米晶结构原位锚定到 Sb 2 S 3 表面。该工艺成功地建立了深埋的背面界面,从而创建了坚固的化学键合桥,以促进顺利的载流子转移。此外,能级排列已根据 PbSe 粒子的量子尺寸效应进行了调整,以减轻后界面的能带偏移。因此,良好的PbSe将表面缺陷密度从2.44×10 16 大幅降低至9.8×10 15 cm –3 ,从而有效抑制非辐射表面光电压降低支持复合。最终得到基于ITO/TiO 2 /CdS/Sb 2 S的Sb 2 S 3 太阳能电池的电能转换效率 3 /PbSe/C/Ag 架构从 6.78% 提升至 7.34%,代表全无机 Sb 2 S 3 太阳能电池达到的最高效率日期。这种深埋背界面的构造策略为追求高效Sb 2 S 3 太阳能电池提供了线索。
更新日期:2024-06-18
down
wechat
bug