Nature Communications ( IF 14.7 ) Pub Date : 2024-06-18 , DOI: 10.1038/s41467-024-48810-3 Jinhyoung Lee 1, 2 , Gunhoo Woo 3, 4 , Jinill Cho 1 , Sihoon Son 3, 4 , Hyelim Shin 5 , Hyunho Seok 3, 4 , Min-Jae Kim 3, 4 , Eungchul Kim 6 , Ziyang Wang 1 , Boseok Kang 3, 4, 7 , Won-Jun Jang 2, 8 , Taesung Kim 1, 3, 4, 5, 7
Two-dimensional (2D) ferroelectric materials have emerged as significant platforms for multi-functional three-dimensional (3D) integrated electronic devices. Among 2D ferroelectric materials, ferro-ionic CuInP2S6 has the potential to achieve the versatile advances in neuromorphic computing systems due to its phase tunability and ferro-ionic characteristics. As CuInP2S6 exhibits a ferroelectric phase with insulating properties at room temperature, the external temperature and electrical field should be required to activate the ferro-ionic conduction. Nevertheless, such external conditions inevitably facilitate stochastic ionic conduction, which completely limits the practical applications of 2D ferro-ionic materials. Herein, free-standing 2D ferroelectric heterostructure is mechanically manipulated for nano-confined conductive filaments growth in free-standing 2D ferro-ionic memristor. The ultra-high mechanical bending is selectively facilitated at the free-standing area to spatially activate the ferro-ionic conduction, which allows the deterministic local positioning of Cu+ ion transport. According to the local flexoelectric engineering, 5.76×102-fold increased maximum current is observed within vertical shear strain 720 nN, which is theoretically supported by the 3D flexoelectric simulation. In conclusion, we envision that our universal free-standing platform can provide the extendable geometric solution for ultra-efficient self-powered system and reliable neuromorphic device.
中文翻译:
独立式二维铁离子忆阻器
二维 (2D) 铁电材料已成为多功能三维 (3D) 集成电子器件的重要平台。在二维铁电材料中,铁离子 CuInP2S6 由于其相位可调性和铁离子特性,有可能在神经形态计算系统中实现多功能进步。由于 CuInP2S6 在室温下表现出具有绝缘性能的铁电相,因此需要外部温度和电场来激活铁离子传导。然而,这样的外部条件不可避免地促进了随机离子传导,这完全限制了二维铁离子材料的实际应用。在此,独立式 2D 铁电异质结构被机械操纵,用于在独立式 2D 铁离子忆阻器中生长纳米受限导电丝。在独立区域选择性地促进了超高机械弯曲,以在空间上激活铁离子传导,从而允许 Cu+ 离子传输的确定性局部定位。根据局部挠曲电工程,在垂直剪切应变 720 nN 内观察到最大电流增加了 5.76×102 倍,这在理论上得到了 3D 挠曲电仿真的支持。总之,我们设想我们的通用独立平台可以为超高效的自供电系统和可靠的神经形态设备提供可扩展的几何解决方案。