当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scalable Nanoimprint Manufacturing of Functional Multilayer Metasurface Devices
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-06-16 , DOI: 10.1002/adfm.202404852 Shinhyuk Choi 1 , Jiawei Zuo 1 , Nabasindhu Das 1 , Yu Yao 1, 2 , Chao Wang 1, 2, 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-06-16 , DOI: 10.1002/adfm.202404852 Shinhyuk Choi 1 , Jiawei Zuo 1 , Nabasindhu Das 1 , Yu Yao 1, 2 , Chao Wang 1, 2, 3
Affiliation
Optical metasurfaces, consisting of subwavelength-scale meta-atom arrays, hold great promise of overcoming the fundamental limitations of conventional optics. Due to their structural complexity, metasurfaces usually require high-resolution yet slow and expensive fabrication processes. Here, using a metasurface polarimetric imaging device as an example, the photonic structures and the Nanoimprint lithography (NIL) processes are designed, creating two separate NIL molds over a patterning area of > 20 mm2 with designed Moiré alignment markers by electron-beam writing, and further subsequently integrate silicon and aluminum metasurface structures on a chip. Uniquely, the silicon and aluminum metasurfaces are fabricated by using the nanolithography and 3D pattern-transfer capabilities of NIL, respectively, achieving nanometer-scale linewidth uniformity, sub-200 nm translational overlay accuracy, and <0.017 rotational alignment error while significantly reducing fabrication complexity and surface roughness. The micro-sized multilayer metasurfaces have high circular polarization extinction ratios as large as ≈20 and ≈80 in blue and red wavelengths. Further, the metasurface chip-integrated CMOS imager demonstrates high accuracy in broad-band, full Stokes parameter analysis in the visible wavelength ranges and single-shot polarimetric imaging. This novel, NIL-based, multilayered nanomanufacturing approach is applicable to the scalable production of large-area functional structures for ultra-compact optic, electronic, and quantum devices.
中文翻译:
功能性多层超表面器件的可扩展纳米压印制造
由亚波长尺度的超原子阵列组成的光学超构表面在克服传统光学的基本限制方面具有很大的前景。由于其结构复杂性,超表面通常需要高分辨率但缓慢且昂贵的制造工艺。在这里,以超表面偏振成像设备为例,设计了光子结构和纳米压印光刻 (NIL) 工艺,在 > 20 mm2 的图案区域上创建两个单独的 NIL 模具,并通过电子束写入设计了莫尔对准标记,并进一步随后将硅和铝超表面结构集成到芯片上。独特的是,硅和铝超表面分别使用 NIL 的纳米光刻和 3D 图案转移功能制造,实现了纳米级线宽均匀性、亚 200 nm 平移覆盖精度和 <0.017 旋转对准误差,同时显著降低了制造复杂性和表面粗糙度。微型多层超表面在蓝色和红色波长下具有高达 ≈20 和 ≈80 的高圆偏振消光比。此外,超表面芯片集成的 CMOS 成像器在可见光波长范围内的宽带、全斯托克斯参数分析和单发偏振成像中表现出高精度。这种新颖的、基于 NIL 的多层纳米制造方法适用于超紧凑光学、电子和量子器件的大面积功能结构的可扩展生产。
更新日期:2024-06-16
中文翻译:
功能性多层超表面器件的可扩展纳米压印制造
由亚波长尺度的超原子阵列组成的光学超构表面在克服传统光学的基本限制方面具有很大的前景。由于其结构复杂性,超表面通常需要高分辨率但缓慢且昂贵的制造工艺。在这里,以超表面偏振成像设备为例,设计了光子结构和纳米压印光刻 (NIL) 工艺,在 > 20 mm2 的图案区域上创建两个单独的 NIL 模具,并通过电子束写入设计了莫尔对准标记,并进一步随后将硅和铝超表面结构集成到芯片上。独特的是,硅和铝超表面分别使用 NIL 的纳米光刻和 3D 图案转移功能制造,实现了纳米级线宽均匀性、亚 200 nm 平移覆盖精度和 <0.017 旋转对准误差,同时显著降低了制造复杂性和表面粗糙度。微型多层超表面在蓝色和红色波长下具有高达 ≈20 和 ≈80 的高圆偏振消光比。此外,超表面芯片集成的 CMOS 成像器在可见光波长范围内的宽带、全斯托克斯参数分析和单发偏振成像中表现出高精度。这种新颖的、基于 NIL 的多层纳米制造方法适用于超紧凑光学、电子和量子器件的大面积功能结构的可扩展生产。