当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fatigue-resistant adhesion through high energy barriers
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-05-30 , DOI: 10.1016/j.jmps.2024.105722 Qi Li , Chao Ma , Yunfeng He , Pengyu Lv , Huiling Duan , Wei Hong
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-05-30 , DOI: 10.1016/j.jmps.2024.105722 Qi Li , Chao Ma , Yunfeng He , Pengyu Lv , Huiling Duan , Wei Hong
The applications of soft materials in various fields often require interfacial adhesion to sustain prolonged static or cyclic loads, whereas most existing adhesives are susceptible to fatigue failure. Unlike in a quasistatic debonding process, which depends more on the average resistance, the key to preventing fatigue crack propagation is to build up high energy barriers locally. Herein, we invoke three types of structural designs to induce large energy barriers at the interface to achieve fatigue-resistant adhesion. By varying the local bending stiffness of the backing layer, locally altering the fracture mode through kirigami patterns, or hindering crack initiation with simple edge notches, we enhanced the fatigue thresholds of various adhesives against peeling by several orders of magnitude, reaching record-breaking values. To verify the proposed mechanism and reveal the details of these remarkable enhancements, we develop theoretical models to study the peeling processes. Based entirely on structural design, the proposed mechanism is non-material-specific and universally applicable to various intermolecular interactions under any harsh environment, such as high temperature, high humidity, and physiological environments. We envision that the strategy and methodologies presented can pave the avenue of future adhesion designs for both durability and reliability.
中文翻译:
通过高能垒实现抗疲劳粘合
软材料在各个领域的应用通常需要界面粘合来承受长时间的静态或循环载荷,而大多数现有的粘合剂容易疲劳失效。与准静态脱粘过程不同,准静态脱粘过程更多地取决于平均电阻,防止疲劳裂纹扩展的关键是在局部建立高能垒。在这里,我们采用三种类型的结构设计来在界面处产生大的能量势垒,以实现抗疲劳粘合。通过改变背衬层的局部弯曲刚度,通过剪纸图案局部改变断裂模式,或用简单的边缘凹口阻止裂纹萌生,我们将各种粘合剂抗剥离的疲劳阈值提高了几个数量级,达到破纪录的值。为了验证所提出的机制并揭示这些显着增强的细节,我们开发了理论模型来研究剥离过程。该机制完全基于结构设计,具有非材料特异性,普遍适用于高温、高湿和生理环境等任何恶劣环境下的各种分子间相互作用。我们预计所提出的策略和方法可以为未来粘合设计的耐用性和可靠性铺平道路。
更新日期:2024-05-30
中文翻译:
通过高能垒实现抗疲劳粘合
软材料在各个领域的应用通常需要界面粘合来承受长时间的静态或循环载荷,而大多数现有的粘合剂容易疲劳失效。与准静态脱粘过程不同,准静态脱粘过程更多地取决于平均电阻,防止疲劳裂纹扩展的关键是在局部建立高能垒。在这里,我们采用三种类型的结构设计来在界面处产生大的能量势垒,以实现抗疲劳粘合。通过改变背衬层的局部弯曲刚度,通过剪纸图案局部改变断裂模式,或用简单的边缘凹口阻止裂纹萌生,我们将各种粘合剂抗剥离的疲劳阈值提高了几个数量级,达到破纪录的值。为了验证所提出的机制并揭示这些显着增强的细节,我们开发了理论模型来研究剥离过程。该机制完全基于结构设计,具有非材料特异性,普遍适用于高温、高湿和生理环境等任何恶劣环境下的各种分子间相互作用。我们预计所提出的策略和方法可以为未来粘合设计的耐用性和可靠性铺平道路。