当前位置: X-MOL 学术Eng. Anal. Bound. Elem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protuberance placement mastery: Shock wave control integration with Coanda effect to thrust vectoring on a sonic jet
Engineering Analysis With Boundary Elements ( IF 4.2 ) Pub Date : 2024-06-12 , DOI: 10.1016/j.enganabound.2024.105769
Mohammad Reza Soufivand , Mohammad Hojaji , Mohammad Hossein Razavi Dehkordi

Thrust Vector Control (TVC) is a technique that allows precise control over the direction and velocity of an aerial vehicle. This paper presents a novel approach combining shock wave control and the Coanda effect to apply this technique in sonic flows. The objective is to achieve more eligible and operational control over the deviation angles of the thrust vector. The research is conducted through numerical simulations and experimental tests to investigate the impact of protuberance location (1, 3.5, and 5 mm), protuberance width (1.5, 2 mm), depth of penetration (2, 6, and 10%), and nozzle pressure ratio (ranging from 2.1 to 4) on the flow field, thrust vector angle, and thrust value of the nozzle. The system's behavior depends on the protuberance location, pressure ratio, and penetration depth. The location of the protuberance influences the shocks and flow separation from the Coanda flap. Increasing the penetration depth up to 10% enhances system stability and reduces the protuberance location's influence on flow deviation. The study highlights the significant effect of protuberance placement on thrust loss, with higher penetration depths resulting in a more significant decrease. The system's behavior in terms of flow deviation is more stable at specific penetration depths and pressure ratios. The results show that the proposed technique achieves a maximum deviation angle of 83° for a sonic jet. In addition, the findings contribute to understanding TVC using protuberances and the Coanda effect. The proposed technique offers advantages in simplicity, reliability, and control performance. It opens possibilities for efficient and maneuverable aerospace vehicles, with applications in UAVs, surveillance, and search and rescue missions.

中文翻译:


突起放置掌握:冲击波控制与柯恩达效应相结合,在音速射流上实现推力矢量



推力矢量控制(TVC)是一种可以精确控制飞行器方向和速度的技术。本文提出了一种结合冲击波控制和柯恩达效应的新颖方法,将该技术应用于声波流。目标是对推力矢量的偏差角实现更合格和可操作的控制。该研究通过数值模拟和实验测试来研究突起位置(1、3.5和5毫米)、突起宽度(1.5、2毫米)、穿透深度(2、6和10%)以及喷嘴压力比(范围2.1~4)对流场、推力矢量角、喷嘴推力值的影响。系统的行为取决于突起位置、压力比和穿透深度。突起的位置影响柯恩达瓣的冲击和流动分离。将穿透深度增加至 10% 可增强系统稳定性并减少突起位置对流量偏差的影响。该研究强调了突起位置对推力损失的显着影响,穿透深度越高,推力损失的减少就越显着。在特定的穿透深度和压力比下,系统的流量偏差行为更加稳定。结果表明,所提出的技术实现了音速射流的最大偏角为 83°。此外,这些发现有助于理解使用突起和柯恩达效应的 TVC。所提出的技术具有简单性、可靠性和控制性能方面的优点。它为高效、机动的航空航天器在无人机、监视以及搜索和救援任务中的应用提供了可能性。
更新日期:2024-06-12
down
wechat
bug