Developmental Cell ( IF 10.7 ) Pub Date : 2024-06-14 , DOI: 10.1016/j.devcel.2024.05.011 Karl Kumbier 1 , Maike Roth 1 , Zizheng Li 1 , Julia Lazzari-Dean 1 , Christopher Waters 1 , Sabrina Hammerlindl 1 , Capria Rinaldi 1 , Ping Huang 1 , Vladislav A Korobeynikov 2 , 3 , Hemali Phatnani 4 , Neil Shneider 5 , Matthew P Jacobson 1 , Lani F Wu 1 , Steven J Altschuler 1
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, highly heterogeneous neurodegenerative disease, underscoring the importance of obtaining information to personalize clinical decisions quickly after diagnosis. Here, we investigated whether ALS-relevant signatures can be detected directly from biopsied patient fibroblasts. We profiled familial ALS (fALS) fibroblasts, representing a range of mutations in the fused in sarcoma (FUS) gene and ages of onset. To differentiate FUS fALS and healthy control fibroblasts, machine-learning classifiers were trained separately on high-content imaging and transcriptional profiles. “Molecular ALS phenotype” scores, derived from these classifiers, captured a spectrum from disease to health. Interestingly, these scores negatively correlated with age of onset, identified several pre-symptomatic individuals and sporadic ALS (sALS) patients with FUS-like fibroblasts, and quantified “movement” of FUS fALS and “FUS-like” sALS toward health upon FUS ASO treatment. Taken together, these findings provide evidence that non-neuronal patient fibroblasts can be used for rapid, personalized assessment in ALS.
中文翻译:
识别患者真皮成纤维细胞的 FUS 肌萎缩侧索硬化症疾病特征
肌萎缩侧索硬化症 (ALS) 是一种进展迅速、高度异质性的神经退行性疾病,强调了在诊断后快速获取信息以做出个性化临床决策的重要性。在这里,我们研究了是否可以直接从活检的患者成纤维细胞中检测到 ALS 相关特征。我们分析了家族性 ALS (fALS) 成纤维细胞,代表了融合肉瘤 (FUS) 基因的一系列突变和发病年龄。为了区分 FUS fALS 和健康对照成纤维细胞,机器学习分类器分别在高内涵成像和转录谱上进行了训练。从这些分类器得出的“分子 ALS 表型”评分捕捉了从疾病到健康的范围。有趣的是,这些评分与发病年龄呈负相关,确定了几个症状前个体和散发性 ALS (sALS) 患者患有 FUS 样成纤维细胞,并量化了 FUS fALS 和“FUS 样”sALS 在 FUS ASO 治疗后走向健康的“运动”。综上所述,这些发现提供了证据,证明非神经元患者成纤维细胞可用于 ALS 的快速、个性化评估。