当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous enhancement of elevated temperature strength and ductility in additive-manufactured nickel-based superalloy via doping Y2O3 nanoparticles
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-06-15 , DOI: 10.1016/j.jmst.2024.04.085
Xiaopeng Cheng , Qianying Guo , Chenxi Liu , Zongqing Ma

In this work, we coated a layer of YO particles in Hastelloy X (HX) nickel-based superalloy powder by in situ chemical method and combined with laser powder bed fusion (LPBF) technology to develop a high-performance YO-doping alloy, designated as Y-HX. The results show that the doping of YO particles prevents crack formation during the printing process and reduces solute segregation at cell and grain boundaries by increasing the viscosity of the molten pool. The doping of YO particles to the printed Y-HX alloy enhances grain boundary characteristics, transforming coarse sheet-like carbides into finely dispersed granular carbides at the boundaries during subsequent heat treatment. Additionally, doping with YO particles increases the recrystallization activation energy of the Y-HX alloy from 149.4 to 278.8 kJ mol. At 750 °C, the Y-HX alloy exhibits an ultimate tensile strength of 619 ± 2 MPa and an elongation of 52 % ± 2 %, along with an ultimate tensile strength of 325 ± 3 MPa and an elongation of 47 % ± 2 % at 900 °C. Our work provides a promising way to develop additive-manufactured superalloys with exceptional thermal stability and remarkable high-temperature mechanical properties.

中文翻译:


通过掺杂 Y2O3 纳米粒子同时增强增材制造镍基高温合金的高温强度和延展性



在这项工作中,我们通过原位化学方法在哈氏合金X(HX)镍基高温合金粉末中包覆一层YO颗粒,并结合激光粉末床熔合(LPBF)技术开发了一种高性能的YO掺杂合金,命名为作为Y-HX。结果表明,YO颗粒的掺杂可以防止打印过程中裂纹的形成,并通过增加熔池的粘度来减少细胞和晶界处的溶质偏析。将 YO 颗粒掺杂到打印的 Y-HX 合金中可以增强晶界特性,在后续热处理过程中将粗大的片状碳化物转变为晶界处的细小分散的粒状碳化物。此外,掺杂 YO 颗粒将 Y-HX 合金的再结晶活化能从 149.4 kJ mol 增加到 278.8 kJ mol。在 750 °C 时,Y-HX 合金的极限拉伸强度为 619 ± 2 MPa,伸长率为 52 % ± 2 %,极限拉伸强度为 325 ± 3 MPa,伸长率为 47 % ± 2 %在900°C。我们的工作为开发具有卓越热稳定性和卓越高温机械性能的增材制造高温合金提供了一种有前景的方法。
更新日期:2024-06-15
down
wechat
bug