当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of core-shell heterostructures Co3S4@NiCo2S4 as cathode and covalent organic framework derived carbon as anode for hybrid supercapacitors
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-06-13 , DOI: 10.1016/j.jmst.2024.05.045
Chenghao Ni , Xiaohong Wang , Xing Cai , Chenxiao Yu , Qianqian Wu , Yutang Shen , Chen Hao

Structured design helps to play out the coordination advantage and optimize the performance of electrochemical reactions. In this work, hierarchical hollow microspheres (Co3S4@NiCo2S4) with unique core-shell heterostructure were successfully prepared through simple template and solvothermal methods. Thanks to the hollow structure, cross-linked nanowire arrays, and in-situ coating of zeolite imidazole framework (ZIF), Co3S4@NiCo2S4 demonstrated excellent electrochemical performance with a specific capacitance of up to 2697.7 F g−1 at 1 A g−1 and cycling stability of 80.5% after 5000 cycles. The covalent organic framework (COF) derived nano carbon, which had undergone secondary calcination and ZnCl2 activation, also exhibited excellent double-layer energy storage performance. Compared to a single calcination, the incredible increase in capacitance was up to 208.5 times greater, reaching 291.9 F g−1 at 1 A g−1 while maintaining ultra-high rate performance (81.0% at 20 A g−1). The hybrid supercapacitor, assembled with Co3S4@NiCo2S4 as the cathode and COF-derived carbon as the anode, exhibited an extremely high energy density (79.7 Wh kg−1 at 693.5 W kg−1) and excellent cyclic stability (maintained 79.3% after 10,000 cycles of 20 A g−1), further explaining the reliable and practical characteristics. This work provided reference for the structural optimization of transition metal sulfides and the high-temperature activation of COF-derived carbon.



中文翻译:


混合超级电容器的核壳异质结构Co3S4@NiCo2S4作为阴极和共价有机骨架衍生碳作为阳极的构建



结构化设计有助于发挥配位优势,优化电化学反应性能。在这项工作中,成功地制备了具有独特核壳异质结构的分层空心微球(Co 3 S 4 @NiCo 2 S 4 )通过简单的模板法和溶剂热法制备。由于中空结构、交联纳米线阵列和沸石咪唑骨架(ZIF)的原位涂层,Co 3 S 4 @NiCo 2 S 4 表现出优异的电化学性能,在1 A g −1 时比电容高达2697.7 F g −1 ,5000次循环后循环稳定性为80.5%。经过二次煅烧和ZnCl 2 活化的共价有机骨架(COF)衍生的纳米碳也表现出优异的双层储能性能。与单次煅烧相比,电容令人难以置信地增加了 208.5 倍,在 1 A g −1 时达到 291.9 F g −1 ,同时保持超高倍率性能 (81.0% 20 A g −1 )。混合超级电容器,以 Co 3 S 4 @NiCo 2 S 4 作为阴极,COF 衍生碳作为阳极组装而成,表现出极高的能量密度(693.5 W kg −1 时为79.7 Wh kg −1 )和出色的循环稳定性(20 A g −1 ),进一步阐释了可靠、实用的特点。该工作为过渡金属硫化物的结构优化和COF衍生碳的高温活化提供参考。

更新日期:2024-06-13
down
wechat
bug