当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Programmable Bacterial Biofilms as Engineered Living Materials
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-15 , DOI: 10.1021/accountsmr.3c00271 Yanyi Wang 1, 2 , Qian Zhang 1, 2 , Changhao Ge 1, 2 , Bolin An 1, 2 , Chao Zhong 1, 2
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-15 , DOI: 10.1021/accountsmr.3c00271 Yanyi Wang 1, 2 , Qian Zhang 1, 2 , Changhao Ge 1, 2 , Bolin An 1, 2 , Chao Zhong 1, 2
Affiliation
Biological substances like wood and bone demonstrate extraordinary characteristics of “living” features, such as the ability to self-grow, self-heal upon encountering damage, and sense and adapt to environmental changes. These attributes are crucial for their survival and adaptation in complex environments. In the field of material science, there is a growing interest in developing biomimetic materials that can self-monitor, adapt to environmental conditions, and self-repair when necessary. Such capabilities would extend the lifespan of materials and pave the way for intelligent applications. However, creating materials with autonomy and intelligence on par with biological systems remains a daunting challenge. In this context, synthetic biology offers a promising avenue. It not only allows for harnessing the inherent dynamic properties of living organisms but provides the possibility of imparting additional advanced functionalities beyond the reach of synthetic materials systems. This approach enables the integration of living cells into materials, providing them with naturally endowed or artificially designed traits. These innovative materials, known as Engineered Living Materials (ELMs), represent an emerging category of smart materials capable of autonomous functions, with applications varying from biomedicine to sustainable technology.
中文翻译:
可编程细菌生物膜作为工程活性材料
木头、骨头等生物物质表现出非凡的“生命”特性,例如自我生长、受损自愈、感知和适应环境变化的能力。这些属性对于它们在复杂环境中的生存和适应至关重要。在材料科学领域,人们对开发能够自我监控、适应环境条件并在必要时进行自我修复的仿生材料越来越感兴趣。这些功能将延长材料的使用寿命,并为智能应用铺平道路。然而,创造与生物系统同等的自主性和智能材料仍然是一项艰巨的挑战。在这种背景下,合成生物学提供了一条有前途的途径。它不仅可以利用生物体固有的动态特性,而且还提供了赋予合成材料系统无法达到的额外先进功能的可能性。这种方法能够将活细胞整合到材料中,为它们提供自然赋予或人工设计的特性。这些创新材料被称为工程活性材料 (ELM),代表了一种新兴的智能材料类别,能够实现自主功能,其应用范围从生物医学到可持续技术。
更新日期:2024-06-15
中文翻译:
可编程细菌生物膜作为工程活性材料
木头、骨头等生物物质表现出非凡的“生命”特性,例如自我生长、受损自愈、感知和适应环境变化的能力。这些属性对于它们在复杂环境中的生存和适应至关重要。在材料科学领域,人们对开发能够自我监控、适应环境条件并在必要时进行自我修复的仿生材料越来越感兴趣。这些功能将延长材料的使用寿命,并为智能应用铺平道路。然而,创造与生物系统同等的自主性和智能材料仍然是一项艰巨的挑战。在这种背景下,合成生物学提供了一条有前途的途径。它不仅可以利用生物体固有的动态特性,而且还提供了赋予合成材料系统无法达到的额外先进功能的可能性。这种方法能够将活细胞整合到材料中,为它们提供自然赋予或人工设计的特性。这些创新材料被称为工程活性材料 (ELM),代表了一种新兴的智能材料类别,能够实现自主功能,其应用范围从生物医学到可持续技术。