当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bilinear Optimal Control for the Fractional Laplacian: Analysis and Discretization
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-06-04 , DOI: 10.1137/23m154947x Francisco Bersetche 1 , Francisco Fuica 2 , Enrique Otárola 3 , Daniel Quero 3
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-06-04 , DOI: 10.1137/23m154947x Francisco Bersetche 1 , Francisco Fuica 2 , Enrique Otárola 3 , Daniel Quero 3
Affiliation
SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1344-1371, June 2024.
Abstract. We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic PDE as the state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first- and necessary and sufficient second-order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.
中文翻译:
分数拉普拉斯算子的双线性最优控制:分析和离散化
《SIAM 数值分析杂志》,第 62 卷,第 3 期,第 1344-1371 页,2024 年 6 月。
抽象的。采用分数拉普拉斯算子的积分定义,研究了Lipschitz域上的最优控制问题,该问题涉及分数椭圆偏微分方程作为状态方程,控制变量作为系数进入状态方程;还考虑了控制变量的逐点约束。我们建立最优解的存在性并分析一阶和充分二阶最优性条件。还分析了最佳变量的规律性估计。我们开发了两种有限元离散化策略:半离散方案(其中控制变量不离散)和全离散方案(其中控制变量用分段常数函数离散)。对于这两种方案,我们分析了离散化的收敛特性并得出误差估计。
更新日期:2024-06-04
Abstract. We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic PDE as the state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first- and necessary and sufficient second-order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.
中文翻译:
分数拉普拉斯算子的双线性最优控制:分析和离散化
《SIAM 数值分析杂志》,第 62 卷,第 3 期,第 1344-1371 页,2024 年 6 月。
抽象的。采用分数拉普拉斯算子的积分定义,研究了Lipschitz域上的最优控制问题,该问题涉及分数椭圆偏微分方程作为状态方程,控制变量作为系数进入状态方程;还考虑了控制变量的逐点约束。我们建立最优解的存在性并分析一阶和充分二阶最优性条件。还分析了最佳变量的规律性估计。我们开发了两种有限元离散化策略:半离散方案(其中控制变量不离散)和全离散方案(其中控制变量用分段常数函数离散)。对于这两种方案,我们分析了离散化的收敛特性并得出误差估计。