当前位置: X-MOL 学术Fract. Calc. Appl. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A high order predictor-corrector method with non-uniform meshes for fractional differential equations
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-06-12 , DOI: 10.1007/s13540-024-00303-2
Farzaneh Mokhtarnezhadazar

This article proposes a predictor-corrector scheme for solving the fractional differential equations \({}_0^C D_t^\alpha y(t) = f(t,y(t)), \alpha >0\) with non-uniform meshes. We reduce the fractional differential equation into the Volterra integral equation. Detailed error analysis and stability analysis are investigated. The convergent order of this method on non-uniform meshes is still 3 though \({}_0^C D_t^\alpha y(t)\) is not smooth at \(t=0\). Numerical examples are carried out to verify the theoretical analysis.



中文翻译:


分数阶微分方程的非均匀网格高阶预测校正方法



本文提出了一种预测校正方案,用于求解非均匀分数阶微分方程 \({}_0^C D_t^\alpha y(t) = f(t,y(t)), \alpha >0\)网格。我们将分数阶微分方程简化为 Volterra 积分方程。研究了详细的误差分析和稳定性分析。尽管 \({}_0^C D_t^\alpha y(t)\) 在 \(t=0\) 处不平滑,但该方法在非均匀网格上的收敛阶数仍然为 3。并通过数值算例验证了理论分析。

更新日期:2024-06-13
down
wechat
bug