当前位置:
X-MOL 学术
›
Burns Trauma
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering
Burns & Trauma ( IF 6.3 ) Pub Date : 2024-06-10 , DOI: 10.1093/burnst/tkae036 Zheng Lv 1 , Ying Ji 2 , Guoliang Wen 1 , Xiayi Liang 3 , Kun Zhang 3 , Wei Zhang 4
Burns & Trauma ( IF 6.3 ) Pub Date : 2024-06-10 , DOI: 10.1093/burnst/tkae036 Zheng Lv 1 , Ying Ji 2 , Guoliang Wen 1 , Xiayi Liang 3 , Kun Zhang 3 , Wei Zhang 4
Affiliation
Critical-sized bone defects represent a significant clinical challenge due to their inability to undergo spontaneous regeneration, necessitating graft interventions for effective treatment. The development of tissue-engineered scaffolds and regenerative medicine has made bone tissue engineering a highly viable treatment for bone defects. The physical and biological properties of nanocomposite biomaterials, which have optimized structures and the ability to simulate the regenerative microenvironment of bone, are promising for application in the field of tissue engineering. These biomaterials offer distinct advantages over traditional materials by facilitating cellular adhesion and proliferation, maintaining excellent osteoconductivity and biocompatibility, enabling precise control of degradation rates, and enhancing mechanical properties. Importantly, they can simulate the natural structure of bone tissue, including the specific microenvironment, which is crucial for promoting the repair and regeneration of bone defects. This manuscript provides a comprehensive review of the recent research developments and applications of structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. This review focuses on the properties and advantages these materials offer for bone repair and tissue regeneration, summarizing the latest progress in the application of nanocomposite biomaterials for bone tissue engineering and highlighting the challenges and future perspectives in the field. Through this analysis, the paper aims to underscore the promising potential of nanocomposite biomaterials in bone tissue engineering, contributing to the informed design and strategic planning of next-generation biomaterials for regenerative medicine.
中文翻译:
骨组织工程中结构优化和微环境启发的纳米复合生物材料
由于无法自发再生,临界大小的骨缺损代表了重大的临床挑战,需要移植物干预来进行有效的治疗。组织工程支架和再生医学的发展使骨组织工程成为治疗骨缺损的高度可行的方法。纳米复合生物材料具有优化的结构和模拟骨再生微环境的物理和生物学特性,在组织工程领域具有广阔的应用前景。这些生物材料通过促进细胞粘附和增殖、保持优异的骨传导性和生物相容性、实现降解速率的精确控制以及增强机械性能,与传统材料相比具有明显的优势。重要的是,它们可以模拟骨组织的自然结构,包括特定的微环境,这对于促进骨缺损的修复和再生至关重要。本手稿全面回顾了结构优化和微环境启发的纳米复合生物材料在骨组织工程中的最新研究进展和应用。本文重点介绍了这些材料在骨修复和组织再生方面的性能和优势,总结了纳米复合生物材料在骨组织工程中应用的最新进展,并强调了该领域面临的挑战和未来前景。通过这一分析,本文旨在强调纳米复合生物材料在骨组织工程中的广阔潜力,有助于下一代再生医学生物材料的知情设计和战略规划。
更新日期:2024-06-10
中文翻译:
骨组织工程中结构优化和微环境启发的纳米复合生物材料
由于无法自发再生,临界大小的骨缺损代表了重大的临床挑战,需要移植物干预来进行有效的治疗。组织工程支架和再生医学的发展使骨组织工程成为治疗骨缺损的高度可行的方法。纳米复合生物材料具有优化的结构和模拟骨再生微环境的物理和生物学特性,在组织工程领域具有广阔的应用前景。这些生物材料通过促进细胞粘附和增殖、保持优异的骨传导性和生物相容性、实现降解速率的精确控制以及增强机械性能,与传统材料相比具有明显的优势。重要的是,它们可以模拟骨组织的自然结构,包括特定的微环境,这对于促进骨缺损的修复和再生至关重要。本手稿全面回顾了结构优化和微环境启发的纳米复合生物材料在骨组织工程中的最新研究进展和应用。本文重点介绍了这些材料在骨修复和组织再生方面的性能和优势,总结了纳米复合生物材料在骨组织工程中应用的最新进展,并强调了该领域面临的挑战和未来前景。通过这一分析,本文旨在强调纳米复合生物材料在骨组织工程中的广阔潜力,有助于下一代再生医学生物材料的知情设计和战略规划。