当前位置:
X-MOL 学术
›
Plant Physiol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Epigenetic control during root development and symbiosis
Plant Physiology ( IF 6.5 ) Pub Date : 2024-06-12 , DOI: 10.1093/plphys/kiae333 María Eugenia Zanetti 1 , Flavio Blanco 1 , Milagros Ferrari 1 , Federico Ariel 2 , Matthias Benoit 3 , Andreas Niebel 3 , Martin Crespi 4, 5
Plant Physiology ( IF 6.5 ) Pub Date : 2024-06-12 , DOI: 10.1093/plphys/kiae333 María Eugenia Zanetti 1 , Flavio Blanco 1 , Milagros Ferrari 1 , Federico Ariel 2 , Matthias Benoit 3 , Andreas Niebel 3 , Martin Crespi 4, 5
Affiliation
Summary The roots of plants play multiples functions that are essential for growth and development, including anchoring to the soil and water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, e.g. the root nodule symbiosis established between a limited group of plants and nitrogen fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of root nodule symbiosis recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes -DNA methylation and histone post-translational modifications- that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlighted how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long non-coding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single-cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
中文翻译:
根系发育和共生过程中的表观遗传控制
摘要 植物的根部发挥着对生长和发育至关重要的多种功能,包括锚定在土壤和水以及养分获取上。这些地下器官表现出可塑性,可以响应环境线索来改变其根系结构,从而适应水和养分可用性的变化。此外,根与土壤微生物发生互惠互生,例如,在有限的植物群与固氮土壤细菌之间建立的根瘤共生关系,以及涉及大多数陆地植物和球菌门真菌的丛枝菌根共生关系。在过去的 20 年中,遗传方法允许对根发育、根瘤和丛枝菌根共生的特定程序所需的基因进行鉴定和功能表征。这些遗传学研究提供了证据,证明根瘤共生程序招募了丛枝菌根共生和根发育程序的组成部分。这些程序的执行受到表观遗传变化(DNA 甲基化和组蛋白翻译后修饰)的强烈影响,这些变化改变了染色质构象,从而改变了关键基因的表达。在这篇综述中,我们总结了最近的进展,这些进展强调了 DNA 甲基化和组蛋白翻译后修饰,以及染色质重塑因子和长链非编码 RNA 如何塑造根系结构并允许成功建立根瘤和丛枝菌根共生。 我们预计,对根器官的特定单细胞或组织类型的动态表观遗传变化和染色质 3D 结构的分析将阐明我们对根发育和共生程序如何协调的理解,从而为调节与营养获取相关的农艺和生态特性带来令人兴奋的问题和新视角。
更新日期:2024-06-12
中文翻译:
根系发育和共生过程中的表观遗传控制
摘要 植物的根部发挥着对生长和发育至关重要的多种功能,包括锚定在土壤和水以及养分获取上。这些地下器官表现出可塑性,可以响应环境线索来改变其根系结构,从而适应水和养分可用性的变化。此外,根与土壤微生物发生互惠互生,例如,在有限的植物群与固氮土壤细菌之间建立的根瘤共生关系,以及涉及大多数陆地植物和球菌门真菌的丛枝菌根共生关系。在过去的 20 年中,遗传方法允许对根发育、根瘤和丛枝菌根共生的特定程序所需的基因进行鉴定和功能表征。这些遗传学研究提供了证据,证明根瘤共生程序招募了丛枝菌根共生和根发育程序的组成部分。这些程序的执行受到表观遗传变化(DNA 甲基化和组蛋白翻译后修饰)的强烈影响,这些变化改变了染色质构象,从而改变了关键基因的表达。在这篇综述中,我们总结了最近的进展,这些进展强调了 DNA 甲基化和组蛋白翻译后修饰,以及染色质重塑因子和长链非编码 RNA 如何塑造根系结构并允许成功建立根瘤和丛枝菌根共生。 我们预计,对根器官的特定单细胞或组织类型的动态表观遗传变化和染色质 3D 结构的分析将阐明我们对根发育和共生程序如何协调的理解,从而为调节与营养获取相关的农艺和生态特性带来令人兴奋的问题和新视角。