当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D Hierarchical Micro/Nanostructures for Sodium-Based Battery Anode Materials
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-10 , DOI: 10.1021/accountsmr.4c00066 Lihong Xu 1, 2 , Yangjie Liu 1 , Xiang Hu 1 , Yongmin Wu 3 , Zhenhai Wen 1 , Jinghong Li 4, 5
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-10 , DOI: 10.1021/accountsmr.4c00066 Lihong Xu 1, 2 , Yangjie Liu 1 , Xiang Hu 1 , Yongmin Wu 3 , Zhenhai Wen 1 , Jinghong Li 4, 5
Affiliation
To meet the increasing energy demand, the development of rechargeable batteries holds immense potential to extend the limitations of electrochemical performance in energy storage devices and enhances the economic efficiency of the energy storage market. Sodium-based batteries have gained tremendous attention in recent years as a potential alternative to reduce the supply risks concerned with lithium-ion batteries (LIBs) owing to the cost-effectiveness and abundance of sodium resources in earth. However, it is still limited by the large ionic radius of Na+ and heavy sodium atoms, which lead to a short cycle life and low energy/power density caused by the sluggish reaction kinetics. A pivotal factor in propelling the commercialization of sodium-based batteries lies in the exploration of advanced anode materials that ideally offer increased mass loading, superior energy/power density, and enhanced conductivity. Three-dimensional hierarchical micro/nanostructured (3D-HMNs) materials have achieved significant research interest since they have played a crucial role in improving the performance of sodium-based cells. They have numerous active sites, versatile functionalization, and favorable transport distances for mass/electron, as well as superior electrochemical performances, which are correlated with the nature of structures and composition.
中文翻译:
钠基电池负极材料的3D分层微/纳米结构
为了满足日益增长的能源需求,可充电电池的发展具有巨大的潜力,可以扩展储能装置电化学性能的局限性,并提高储能市场的经济效益。近年来,由于成本效益高且地球上钠资源丰富,钠基电池作为降低锂离子电池(LIB)供应风险的潜在替代品而受到极大关注。然而,它仍然受到Na + 离子半径大和钠原子重的限制,导致循环寿命短,反应动力学缓慢,导致能量/功率密度低。推动钠基电池商业化的关键因素在于对先进阳极材料的探索,这些材料理想地提供增加的质量负载、卓越的能量/功率密度和增强的导电性。三维分层微/纳米结构(3D-HMN)材料在提高钠基电池的性能方面发挥了至关重要的作用,因此引起了人们的广泛研究兴趣。它们具有众多的活性位点、多功能的功能化、有利的质量/电子传输距离以及优异的电化学性能,这些都与结构和组成的性质相关。
更新日期:2024-06-10
中文翻译:
钠基电池负极材料的3D分层微/纳米结构
为了满足日益增长的能源需求,可充电电池的发展具有巨大的潜力,可以扩展储能装置电化学性能的局限性,并提高储能市场的经济效益。近年来,由于成本效益高且地球上钠资源丰富,钠基电池作为降低锂离子电池(LIB)供应风险的潜在替代品而受到极大关注。然而,它仍然受到Na + 离子半径大和钠原子重的限制,导致循环寿命短,反应动力学缓慢,导致能量/功率密度低。推动钠基电池商业化的关键因素在于对先进阳极材料的探索,这些材料理想地提供增加的质量负载、卓越的能量/功率密度和增强的导电性。三维分层微/纳米结构(3D-HMN)材料在提高钠基电池的性能方面发挥了至关重要的作用,因此引起了人们的广泛研究兴趣。它们具有众多的活性位点、多功能的功能化、有利的质量/电子传输距离以及优异的电化学性能,这些都与结构和组成的性质相关。