当前位置:
X-MOL 学术
›
J. Comput. Graph. Stat.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultra-efficient MCMC for Bayesian longitudinal functional data analysis
Journal of Computational and Graphical Statistics ( IF 1.4 ) Pub Date : 2024-06-07 , DOI: 10.1080/10618600.2024.2362227 Thomas Y. Sun 1 , Daniel R. Kowal 2
Journal of Computational and Graphical Statistics ( IF 1.4 ) Pub Date : 2024-06-07 , DOI: 10.1080/10618600.2024.2362227 Thomas Y. Sun 1 , Daniel R. Kowal 2
Affiliation
Functional mixed models are widely useful for regression analysis with dependent functional data, including longitudinal functional data with scalar predictors. However, existing algorithms for Bay...
中文翻译:
用于贝叶斯纵向函数数据分析的超高效 MCMC
函数混合模型广泛用于具有相关函数数据的回归分析,包括具有标量预测变量的纵向函数数据。然而,Bay 的现有算法...
更新日期:2024-06-12
中文翻译:
用于贝叶斯纵向函数数据分析的超高效 MCMC
函数混合模型广泛用于具有相关函数数据的回归分析,包括具有标量预测变量的纵向函数数据。然而,Bay 的现有算法...